The drive for minimally invasive endodontic treatment strategies has shifted focus from technically complex and destructive root canal treatments towards more conservative vital pulp treatment.However,novel approaches...The drive for minimally invasive endodontic treatment strategies has shifted focus from technically complex and destructive root canal treatments towards more conservative vital pulp treatment.However,novel approaches to maintaining dental pulp vitality after disease or trauma will require the development of innovative,biologicallydriven regenerative medicine strategies.For example,cell-homing and cell-based therapies have recently been developed in vitro and trialled in preclinical models to study dental pulp regeneration.These approaches utilise natural and synthetic scaffolds that can deliver a range of bioactive pharmacological epigenetic modulators(HDACis,DNMTis,and ncRNAs),which are cost-effective and easily applied to stimulate pulp tissue regrowth.Unfortunately,many biological factors hinder the clinical development of regenerative therapies,including a lack of blood supply and poor infection control in the necrotic root canal system.Additional challenges include a need for clinically relevant models and manufacturing challenges such as scalability,cost concerns,and regulatory issues.This review will describe the current state of bioactive-biomaterial/scaffold-based engineering strategies to stimulate dentine-pulp regeneration,explicitly focusing on epigenetic modulators and therapeutic pharmacological inhibition.It will highlight the components of dental pulp regenerative approaches,describe their current limitations,and offer suggestions for the effective translation of novel epigenetic-laden bioactive materials for innovative therapeutics.展开更多
基金supported by Trinity College Dublin(Trinity Research Doctorate Award).All figures were created with BioR ender.com.
文摘The drive for minimally invasive endodontic treatment strategies has shifted focus from technically complex and destructive root canal treatments towards more conservative vital pulp treatment.However,novel approaches to maintaining dental pulp vitality after disease or trauma will require the development of innovative,biologicallydriven regenerative medicine strategies.For example,cell-homing and cell-based therapies have recently been developed in vitro and trialled in preclinical models to study dental pulp regeneration.These approaches utilise natural and synthetic scaffolds that can deliver a range of bioactive pharmacological epigenetic modulators(HDACis,DNMTis,and ncRNAs),which are cost-effective and easily applied to stimulate pulp tissue regrowth.Unfortunately,many biological factors hinder the clinical development of regenerative therapies,including a lack of blood supply and poor infection control in the necrotic root canal system.Additional challenges include a need for clinically relevant models and manufacturing challenges such as scalability,cost concerns,and regulatory issues.This review will describe the current state of bioactive-biomaterial/scaffold-based engineering strategies to stimulate dentine-pulp regeneration,explicitly focusing on epigenetic modulators and therapeutic pharmacological inhibition.It will highlight the components of dental pulp regenerative approaches,describe their current limitations,and offer suggestions for the effective translation of novel epigenetic-laden bioactive materials for innovative therapeutics.