Next-generation sequencing (NGS) is getting routinely used in the diagnosis of hereditary diseases, such as human cardiomyopathies. Hence. it is of utter importance to secure high quality sequencing data, enabling t...Next-generation sequencing (NGS) is getting routinely used in the diagnosis of hereditary diseases, such as human cardiomyopathies. Hence. it is of utter importance to secure high quality sequencing data, enabling the identification of disease-relevant mutations or the conclusion of negative test results. During the process of sample preparation, each protocol for target enrichment library preparation has its own requirements for quality control (QC); however, there is little evi- dence on the actual impact of these guidelines on resulting data quality. In this study, we analyzed the impact of QC during the diverse library preparation steps of Agilent SureSelect XT target enrichment and lllumina sequencing. We quantified the parameters for a cohort of around 600 samples, which include starting amount of DNA, amount of sheared DNA, smallest and largest fragment size of the starting DNA; amount of DNA after the pre-PCR, and smallest and largest fragment size of the resulting DNA; as well as the amount of the final library, the corresponding smallest and largest fragment size, and the number of detected variants. Intriguingly, there is a high tolerance for variations in all QC steps, meaning that within the boundaries proposed in the current study, a considerable variance at each step of QC can be well tolerated without compromising NGS quality.展开更多
基金supported by the German Centre for Cardiovascular Research (DZHK), the European Union (FP7 Inheritance and FP7 Best Ageing), and the German Ministry of Education and Research (BMBF)
文摘Next-generation sequencing (NGS) is getting routinely used in the diagnosis of hereditary diseases, such as human cardiomyopathies. Hence. it is of utter importance to secure high quality sequencing data, enabling the identification of disease-relevant mutations or the conclusion of negative test results. During the process of sample preparation, each protocol for target enrichment library preparation has its own requirements for quality control (QC); however, there is little evi- dence on the actual impact of these guidelines on resulting data quality. In this study, we analyzed the impact of QC during the diverse library preparation steps of Agilent SureSelect XT target enrichment and lllumina sequencing. We quantified the parameters for a cohort of around 600 samples, which include starting amount of DNA, amount of sheared DNA, smallest and largest fragment size of the starting DNA; amount of DNA after the pre-PCR, and smallest and largest fragment size of the resulting DNA; as well as the amount of the final library, the corresponding smallest and largest fragment size, and the number of detected variants. Intriguingly, there is a high tolerance for variations in all QC steps, meaning that within the boundaries proposed in the current study, a considerable variance at each step of QC can be well tolerated without compromising NGS quality.