Room temperature phosphorescent(RTP)materials have a variety of applications ranging from bioimaging,optoelectronic devices to information security protection.However,the preparation procedures for these materials are...Room temperature phosphorescent(RTP)materials have a variety of applications ranging from bioimaging,optoelectronic devices to information security protection.However,the preparation procedures for these materials are always tedious and time-consuming.Here,we report a micro-wave approach to prepare RTP carbon dots(CDs)in only 8 min.The micro-wave promoted the carbon and boron bond formation using natural compounds glucose and boric acids.This result has been confirmed using TEM,FTIR,XPS and XRD measurements.The C-B hetero atomized material presented a long afterglow property.With the irradiation with UV light,we observed an eight-second RTP by naked eyes after the lamp was turned off,and the phosphorescence lifetime was 487 ms.This excellent performance was mainly due to the formation of B-C bonds that promoted the intersystem crossings(ISC)and non-radiation transition of triplet states.Moreover,the glass state of the materials also helped to stabilize the triplet states of B-CDs and made its non-irradiation inactivated,which resulted in the characteristics of yellow green RTP.These results have demonstrated that micro-wave is a convenient and effective strategy to make hetero atomized RTP material,providing new possibilities for their industrial productions.展开更多
基金the financial support from the National Natural Science Foundation of China(No.21801052)Hainan University start-up fund(No.KYQD(ZR)1852)the construction program of research platform in Hainan University(No.ZY2019HN09)。
文摘Room temperature phosphorescent(RTP)materials have a variety of applications ranging from bioimaging,optoelectronic devices to information security protection.However,the preparation procedures for these materials are always tedious and time-consuming.Here,we report a micro-wave approach to prepare RTP carbon dots(CDs)in only 8 min.The micro-wave promoted the carbon and boron bond formation using natural compounds glucose and boric acids.This result has been confirmed using TEM,FTIR,XPS and XRD measurements.The C-B hetero atomized material presented a long afterglow property.With the irradiation with UV light,we observed an eight-second RTP by naked eyes after the lamp was turned off,and the phosphorescence lifetime was 487 ms.This excellent performance was mainly due to the formation of B-C bonds that promoted the intersystem crossings(ISC)and non-radiation transition of triplet states.Moreover,the glass state of the materials also helped to stabilize the triplet states of B-CDs and made its non-irradiation inactivated,which resulted in the characteristics of yellow green RTP.These results have demonstrated that micro-wave is a convenient and effective strategy to make hetero atomized RTP material,providing new possibilities for their industrial productions.