期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Tuning hybrid liquid/solid electrolytes by lowering Li salt concentration for lithium batteries
1
作者 杨伟 王启迪 +8 位作者 雷宇 万子裴 秦磊 余唯 刘如亮 翟登云 李泓 李宝华 康飞宇 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第6期488-495,共8页
Hybrid liquid/solid electrolytes(HLSEs) consisting of conventional organic liquid electrolyte(LE), polyacrylonitrile(PAN), and ceramic lithium ion conductor Li(1.5)Al(0.5)Ge(1.5)(PO4)3(LAGP) are propos... Hybrid liquid/solid electrolytes(HLSEs) consisting of conventional organic liquid electrolyte(LE), polyacrylonitrile(PAN), and ceramic lithium ion conductor Li(1.5)Al(0.5)Ge(1.5)(PO4)3(LAGP) are proposed and investigated. The HLSE has a high ionic conductivity of over 2.25 × 10^(-3) S/cm at 25?C, and an extended electrochemical window of up to 4.8 V versus Li/Li+. The Li|HLSE|Li symmetric cells and Li|HLSE|Li FePO4 cells exhibit small interfacial area specific resistances(ASRs) comparable to that of LE while much smaller than that of ceramic LAGP electrolyte, and excellent performance at room temperature. Bis(trifluoromethane sulfonimide) salt in HLSE significantly affects the properties and electrochemical behaviors. Side reactions can be effectively suppressed by lowering the concentration of Li salt. It is a feasible strategy for pursuing the high energy density batteries with higher safety. 展开更多
关键词 lithium battery hybrid liquid/solid electrolyte interfacial resistance salt concentration
下载PDF
Multifunctional Templating Strategy for Fabrication of Fe,N-Codoped Hierarchical Porous Carbon Nanosheets 被引量:2
2
作者 Yu-heng Lu You-chen Tang +4 位作者 ru-liang liu Chuan-fa Li Shao-hong liu You-long Zhu Ding-cai Wu 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2022年第1期2-6,共5页
Due to the unique physical and chemical merits including excellent electrical conductivity,superior chemical stability,and tunable carbon framework,two-dimensional(2 D)porous carbon nanosheets have drawn increasing re... Due to the unique physical and chemical merits including excellent electrical conductivity,superior chemical stability,and tunable carbon framework,two-dimensional(2 D)porous carbon nanosheets have drawn increasing research interest and demonstrated promising potentials in various applications.However,regulating the nanostructure of 2 D porous carbon nanosheets by facile and efficient strategies remains a great challenge.Herein,we develop a new strategy to construct Fe,N-codoped hierarchical porous carbon nanosheets(Fe-N-HPCNS)by using 2 D Fe-Zn layered double hydroxides(Fe-Zn-LDH)as multifunctional templates.Fe-Zn-LDH could functionalize not only as 2 D structure directing agents but also as ternary hierarchical porogens for micro-,meso-and macropores and in situ Fe dopants.This multifunctional templating strategy toward 2 D porous carbon nanosheets can improve the utilization of templates and shows great advantages against conventional procedures that additional porogens and/or dopants are often needed. 展开更多
关键词 Carbon nanosheets Multifunctional templates Hierarchical pores Heteroatom doping
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部