Aims The plant-herbivore interaction is one of the most fundamental inter-actions in nature.Plants are sessile organisms,and consequently rely on particular strategies to avoid or reduce the negative impact of herbivo...Aims The plant-herbivore interaction is one of the most fundamental inter-actions in nature.Plants are sessile organisms,and consequently rely on particular strategies to avoid or reduce the negative impact of herbivory.Here,we aimed to determine the defense strategies against insect herbivores in the creeping invasive plant Alternanthera philoxeroides.Methods We tested the defense response of A.philoxeroides to herbivory by a leaf-feeding specialist insect Agasicles hygrophila and a pol-yphagous sap-feeding insect Planococcus minor.We also tested the mechanisms triggering defense responses of A.philoxeroides by including treatments of artificial leaf removal and jasmonic acid application.Furthermore,we examined the effect of physiological integration on these defense strategies.Important Findings The combination of artificial leaf removal and jasmonic acid appli-cation produced a similar effect to that of leaf-feeding by the real herbivore.Physiological integration influenced the defense strat-egies of A.philoxeroides against herbivores,and increased biomass allocation to aboveground parts in its apical ramets damaged by real herbivores.Our study highlights the importance of physio-logical integration and modular plasticity for understanding the consequences of herbivory in clonal plants.展开更多
Aims Recent studies have revealed heritable phenotypic plasticity through vegetative generations.In this sense,changes in gene regulation induced by the environment,such as DNA methylation(i.e.epigenetic changes),can ...Aims Recent studies have revealed heritable phenotypic plasticity through vegetative generations.In this sense,changes in gene regulation induced by the environment,such as DNA methylation(i.e.epigenetic changes),can result in reversible plastic responses being transferred to the offspring generations.This trans-generational plasticity is expected to be especially relevant in clonal plants,since reduction of sexual reproduction can decrease the potential for adaptation through genetic variation.Many of the most aggressive plant invaders are clonal,and clonality has been suggested as key to explain plant invasiveness.Here we aim to determine whether trans-generational effects occur in the clonal invader Alternanthera philoxeroides,and whether such effects differ between populations from native and non-native ranges.Methods In a common garden experiment,parent plants of A.philoxeroides from populations collected in Brazil(native range)and Iberian Peninsula(non-native range)were grown in high and low soil nutrient conditions,and offspring plants were transplanted to control conditions with high nutrients.To test the potential role of DNA methylation on trans-generational plasticity,half of the parent plants were treated with the demethylating agent,5-azacytidine.Important Findings Trans-generational effects were observed both in populations from the native and the non-native ranges.Interestingly,trans-generational effects occurred on growth variables(number of ramets,stem mass,root mass and total mass)in the population from the native range,but on biomass partitioning in the population from the non-native range.Trans-generational effects of the population from the native range may be explained by a‘silver-spoon’effect,whereas those of the population from the non-native range could be explained by epigenetic transmission due to DNA methylation.Our study highlights the importance of trans-generational effects on the growth of a clonal plant,which could help to understand the mechanisms underlying expansion success of many clonal plants.展开更多
Aims One of the key traits associated with clonal growth in plants is the capacity for physiological integration,which allows resource sharing between connected ramets within a clonal system.Resource transport is expe...Aims One of the key traits associated with clonal growth in plants is the capacity for physiological integration,which allows resource sharing between connected ramets within a clonal system.Resource transport is expected to occur following a source–sink relationship:from ramets established in rich patches to ramets growing in poor patches.However,some experiments have shown that acropetal transport(from basal to apical modules)usually exceeds basipetal transport(from apical to basal ramets).In this study,we aimed to determine the resource transport directionality in physiologically integrated modules of the invader Carpobrotus edulis.Methods We conducted two manipulative experiments under common garden conditions that studied the effect of different nutrient levels located at different positions(basal,medial and apical)on connected and disconnected clonal systems of C.edulis.We compared the biomass partitioning patterns and final biomass of ramets to elucidate whether the effect of physiological integration is affected by the directionality of the resource transport.Important Findings Results indicate a prevalent acropetal transport of resources in C.edulis,with a developmentally programmed division of labor where basal ramets were specialized in obtaining soil-based resources and apical ramets specialized in aboveground growth.This biomass partitioning pattern was not affected by the nutrient conditions in which basal or apical ramets were growing,although the highest benefit was achieved by apical ramets growing under the most stressed conditions.This developmentally programmed division of labor is expected to increase the lateral growth of C.edulis,and therefore could have meaningful implications for the expansion of this invasive species.展开更多
基金This research was supported by the National Key Resecarch and Development Program of China(2016YFC1201100)NSFC(31570413,31500331)to F.H.Y.and B.C.D.S.R.R.+1 种基金R.B.and R.P.acknowledge funding from the Spanish Ministry of Economy and Competitiveness(project Ref.CGL2013-44519-R,cofinanced by the European Regional Development Fund,ERDF)This is a contribution from the Alien Species Network(Ref.ED431D 2017/20-Xunta de Galicia,Autonomous Government of Galicia).
文摘Aims The plant-herbivore interaction is one of the most fundamental inter-actions in nature.Plants are sessile organisms,and consequently rely on particular strategies to avoid or reduce the negative impact of herbivory.Here,we aimed to determine the defense strategies against insect herbivores in the creeping invasive plant Alternanthera philoxeroides.Methods We tested the defense response of A.philoxeroides to herbivory by a leaf-feeding specialist insect Agasicles hygrophila and a pol-yphagous sap-feeding insect Planococcus minor.We also tested the mechanisms triggering defense responses of A.philoxeroides by including treatments of artificial leaf removal and jasmonic acid application.Furthermore,we examined the effect of physiological integration on these defense strategies.Important Findings The combination of artificial leaf removal and jasmonic acid appli-cation produced a similar effect to that of leaf-feeding by the real herbivore.Physiological integration influenced the defense strat-egies of A.philoxeroides against herbivores,and increased biomass allocation to aboveground parts in its apical ramets damaged by real herbivores.Our study highlights the importance of physio-logical integration and modular plasticity for understanding the consequences of herbivory in clonal plants.
基金supported by a mobility grant from the University of A Coruña(Inditex-UDC 2017 program)This is a contribution from the Alien Species Network(Ref.ED431D 2017/20-Xunta de Galicia,Autonomous Government of Galicia).D.M.S.M.thanks the Brazilian Conselho Nacional de Desenvolvimento Científico e Tecnológico/CNPq(307839/2014-1)for her Research Fellowship.
文摘Aims Recent studies have revealed heritable phenotypic plasticity through vegetative generations.In this sense,changes in gene regulation induced by the environment,such as DNA methylation(i.e.epigenetic changes),can result in reversible plastic responses being transferred to the offspring generations.This trans-generational plasticity is expected to be especially relevant in clonal plants,since reduction of sexual reproduction can decrease the potential for adaptation through genetic variation.Many of the most aggressive plant invaders are clonal,and clonality has been suggested as key to explain plant invasiveness.Here we aim to determine whether trans-generational effects occur in the clonal invader Alternanthera philoxeroides,and whether such effects differ between populations from native and non-native ranges.Methods In a common garden experiment,parent plants of A.philoxeroides from populations collected in Brazil(native range)and Iberian Peninsula(non-native range)were grown in high and low soil nutrient conditions,and offspring plants were transplanted to control conditions with high nutrients.To test the potential role of DNA methylation on trans-generational plasticity,half of the parent plants were treated with the demethylating agent,5-azacytidine.Important Findings Trans-generational effects were observed both in populations from the native and the non-native ranges.Interestingly,trans-generational effects occurred on growth variables(number of ramets,stem mass,root mass and total mass)in the population from the native range,but on biomass partitioning in the population from the non-native range.Trans-generational effects of the population from the native range may be explained by a‘silver-spoon’effect,whereas those of the population from the non-native range could be explained by epigenetic transmission due to DNA methylation.Our study highlights the importance of trans-generational effects on the growth of a clonal plant,which could help to understand the mechanisms underlying expansion success of many clonal plants.
基金This work was supported by funds from the Alien Species Network(Ref.ED431D 2017/20-Xunta de Galicia,Autonomous Government of Galicia).
文摘Aims One of the key traits associated with clonal growth in plants is the capacity for physiological integration,which allows resource sharing between connected ramets within a clonal system.Resource transport is expected to occur following a source–sink relationship:from ramets established in rich patches to ramets growing in poor patches.However,some experiments have shown that acropetal transport(from basal to apical modules)usually exceeds basipetal transport(from apical to basal ramets).In this study,we aimed to determine the resource transport directionality in physiologically integrated modules of the invader Carpobrotus edulis.Methods We conducted two manipulative experiments under common garden conditions that studied the effect of different nutrient levels located at different positions(basal,medial and apical)on connected and disconnected clonal systems of C.edulis.We compared the biomass partitioning patterns and final biomass of ramets to elucidate whether the effect of physiological integration is affected by the directionality of the resource transport.Important Findings Results indicate a prevalent acropetal transport of resources in C.edulis,with a developmentally programmed division of labor where basal ramets were specialized in obtaining soil-based resources and apical ramets specialized in aboveground growth.This biomass partitioning pattern was not affected by the nutrient conditions in which basal or apical ramets were growing,although the highest benefit was achieved by apical ramets growing under the most stressed conditions.This developmentally programmed division of labor is expected to increase the lateral growth of C.edulis,and therefore could have meaningful implications for the expansion of this invasive species.
基金Funding Spanish Ministry of Economy and Competitiveness(Grant CGL2013-44519-R,co-financed by the European Regional Development Fund,to S.R.R.)and CSIRO Julius Career Award(to B.L.W.).