期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Classification and Comprehension of Software Requirements Using Ensemble Learning
1
作者 Jalil Abbas Arshad Ahmad +4 位作者 Syed Muqsit Shaheed rubia fatima Sajid Shah Mohammad Elaffendi Gauhar Ali 《Computers, Materials & Continua》 SCIE EI 2024年第8期2839-2855,共17页
The software development process mostly depends on accurately identifying both essential and optional features.Initially,user needs are typically expressed in free-form language,requiring significant time and human re... The software development process mostly depends on accurately identifying both essential and optional features.Initially,user needs are typically expressed in free-form language,requiring significant time and human resources to translate these into clear functional and non-functional requirements.To address this challenge,various machine learning(ML)methods have been explored to automate the understanding of these requirements,aiming to reduce time and human effort.However,existing techniques often struggle with complex instructions and large-scale projects.In our study,we introduce an innovative approach known as the Functional and Non-functional Requirements Classifier(FNRC).By combining the traditional random forest algorithm with the Accuracy Sliding Window(ASW)technique,we develop optimal sub-ensembles that surpass the initial classifier’s accuracy while using fewer trees.Experimental results demonstrate that our FNRC methodology performs robustly across different datasets,achieving a balanced Precision of 75%on the PROMISE dataset and an impressive Recall of 85%on the CCHIT dataset.Both datasets consistently maintain an F-measure around 64%,highlighting FNRC’s ability to effectively balance precision and recall in diverse scenarios.These findings contribute to more accurate and efficient software development processes,increasing the probability of achieving successful project outcomes. 展开更多
关键词 Ensemble learning machine learning non-functional requirements requirement engineering accuracy sliding window
下载PDF
Towards Cache-Assisted Hierarchical Detection for Real-Time Health Data Monitoring in IoHT
2
作者 Muhammad Tahir Mingchu Li +4 位作者 Irfan Khan Salman AAl Qahtani rubia fatima Javed Ali Khan Muhammad Shahid Anwar 《Computers, Materials & Continua》 SCIE EI 2023年第11期2529-2544,共16页
Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the eff... Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the efficacy of big data awareness detection systems.We advocate for a collaborative caching approach involving edge devices and cloud networks to combat this.This strategy is devised to streamline the data retrieval path,subsequently diminishing network strain.Crafting an adept cache processing scheme poses its own set of challenges,especially given the transient nature of monitoring data and the imperative for swift data transmission,intertwined with resource allocation tactics.This paper unveils a novel mobile healthcare solution that harnesses the power of our collaborative caching approach,facilitating nuanced health monitoring via edge devices.The system capitalizes on cloud computing for intricate health data analytics,especially in pinpointing health anomalies.Given the dynamic locational shifts and possible connection disruptions,we have architected a hierarchical detection system,particularly during crises.This system caches data efficiently and incorporates a detection utility to assess data freshness and potential lag in response times.Furthermore,we introduce the Cache-Assisted Real-Time Detection(CARD)model,crafted to optimize utility.Addressing the inherent complexity of the NP-hard CARD model,we have championed a greedy algorithm as a solution.Simulations reveal that our collaborative caching technique markedly elevates the Cache Hit Ratio(CHR)and data freshness,outshining its contemporaneous benchmark algorithms.The empirical results underscore the strength and efficiency of our innovative IoHT-based health monitoring solution.To encapsulate,this paper tackles the nuances of real-time health data monitoring in the IoHT landscape,presenting a joint edge-cloud caching strategy paired with a hierarchical detection system.Our methodology yields enhanced cache efficiency and data freshness.The corroborative numerical data accentuates the feasibility and relevance of our model,casting a beacon for the future trajectory of real-time health data monitoring systems. 展开更多
关键词 Real-time health data monitoring Cache-Assisted Real-Time Detection(CARD) edge-cloud collaborative caching scheme hierarchical detection Internet of Health Things(IoHT)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部