This paper studies the effective properties of multi-phase thermoelastic composites. Based on the Helmholtz free energy and the Gibbs free energy of individual phases, the effective elastic tensor, thermal-expansion t...This paper studies the effective properties of multi-phase thermoelastic composites. Based on the Helmholtz free energy and the Gibbs free energy of individual phases, the effective elastic tensor, thermal-expansion tensor, and specific heats of the multi-phase composites are derived by means of the volume average of free-energies of these phases. Particular emphasis is placed on the derivation of new analytical expressions of effective specific heats at constant-strain and constant-stress situations, in which a modified Eshelby's micromechanics theory is developed and the interaction between inclusions is considered. As an illustrative example, the analytical expression of the effective specific heat for a three-phase thermoelastic composite is presented.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 10602002 and 10932001)the Major State Basic Research Development Program (No. 2010CB731503)
文摘This paper studies the effective properties of multi-phase thermoelastic composites. Based on the Helmholtz free energy and the Gibbs free energy of individual phases, the effective elastic tensor, thermal-expansion tensor, and specific heats of the multi-phase composites are derived by means of the volume average of free-energies of these phases. Particular emphasis is placed on the derivation of new analytical expressions of effective specific heats at constant-strain and constant-stress situations, in which a modified Eshelby's micromechanics theory is developed and the interaction between inclusions is considered. As an illustrative example, the analytical expression of the effective specific heat for a three-phase thermoelastic composite is presented.