Increased turnover of organic matter as a result of soil disturbance (e.g. by soil tillage) is described in principle, but the direct influence of soil disturbance on soil P turnover especially for organic farming sys...Increased turnover of organic matter as a result of soil disturbance (e.g. by soil tillage) is described in principle, but the direct influence of soil disturbance on soil P turnover especially for organic farming systems has not been sufficiently proven. The objective of the study was to evaluate the short term effect of soil disturbance on different soil P fractions in a soil shaking experiment. Four soils were incubated for 10 days in the dark with three different disturbance treatments: 1) no disturbance, 2) overhead shaking for 2 h at the beginning of the experiment and 3) continuous overhead shaking at 5 r. p. m. The four investigated soils were: 1) a silty loam soil with long term bio-compost application and 2) the corresponding soil without bio-compost application, 3) a long-term organically managed clay loam soil and 4) a clay loam soil with long time application of pig manure, all not and from Baden-Württemberg, Germany. We determined NaHCO3-, NaOH- and H2SO4-extractable inorganic and organic P fractions (Pi and Po, resp.) in a sequential extraction. Furthermore, the potentially plant available P as Calcium-acetate-lactate-extractable P (CAL-P) and P extractable by electro-ultra-filtration (EUF-P), and aqua regia extractable total P (PT) were determined. Furthermore, we determined microbial biomass carbon (MBC), nitrogen (MBN) and phosphorus (MBP), and acid phosphatase activity in soil. The organically managed soil had the highest PT contents (1300 mg·kg-1). The soil with pig manure application had the smallest potentially labile P fractions (NaHCO3-Pi and -Po and NaOH-Pi). The ecologically managed soil had the biggest organic P fractions (114 mg·kg-1 NaHCO3-Po and 463 mg·kg-1 NaOH-Po), but, this soil was the lowest in CAL-P (5 mg·kg-1). Short term soil disturbance had effects on labile organic P fractions of two of the four analyzed soils, but inorganic P was rather unaffected. In the compost amended COMP(+) soil, there was an incorporation of P from the less available NaOH-P fractions into the more available NaHCO3-Po fraction. However, if taking all investigated soils and treatments into account, the effects of soil disturbance were limited and not consistent.展开更多
文摘Increased turnover of organic matter as a result of soil disturbance (e.g. by soil tillage) is described in principle, but the direct influence of soil disturbance on soil P turnover especially for organic farming systems has not been sufficiently proven. The objective of the study was to evaluate the short term effect of soil disturbance on different soil P fractions in a soil shaking experiment. Four soils were incubated for 10 days in the dark with three different disturbance treatments: 1) no disturbance, 2) overhead shaking for 2 h at the beginning of the experiment and 3) continuous overhead shaking at 5 r. p. m. The four investigated soils were: 1) a silty loam soil with long term bio-compost application and 2) the corresponding soil without bio-compost application, 3) a long-term organically managed clay loam soil and 4) a clay loam soil with long time application of pig manure, all not and from Baden-Württemberg, Germany. We determined NaHCO3-, NaOH- and H2SO4-extractable inorganic and organic P fractions (Pi and Po, resp.) in a sequential extraction. Furthermore, the potentially plant available P as Calcium-acetate-lactate-extractable P (CAL-P) and P extractable by electro-ultra-filtration (EUF-P), and aqua regia extractable total P (PT) were determined. Furthermore, we determined microbial biomass carbon (MBC), nitrogen (MBN) and phosphorus (MBP), and acid phosphatase activity in soil. The organically managed soil had the highest PT contents (1300 mg·kg-1). The soil with pig manure application had the smallest potentially labile P fractions (NaHCO3-Pi and -Po and NaOH-Pi). The ecologically managed soil had the biggest organic P fractions (114 mg·kg-1 NaHCO3-Po and 463 mg·kg-1 NaOH-Po), but, this soil was the lowest in CAL-P (5 mg·kg-1). Short term soil disturbance had effects on labile organic P fractions of two of the four analyzed soils, but inorganic P was rather unaffected. In the compost amended COMP(+) soil, there was an incorporation of P from the less available NaOH-P fractions into the more available NaHCO3-Po fraction. However, if taking all investigated soils and treatments into account, the effects of soil disturbance were limited and not consistent.