Not many bathymetric maps are available for many lakes and reservoirs in developing countries. Usually the bathymetric mapping requires investment in expensive equipment and fieldwork, both of which are not accessible...Not many bathymetric maps are available for many lakes and reservoirs in developing countries. Usually the bathymetric mapping requires investment in expensive equipment and fieldwork, both of which are not accessible in these countries. This work demonstrates the ability to develop bathymetric map of Mosul Lake by using a digital elevation model (DEM). The depths model of the lake was designed through the use of three main stages;a coastline extraction, dataset interpolation and a triangular irregular network model. The normalized difference water index (NDWI) was used for automatic delineation of the lake coastline from satellite images. The ordinary kriging interpolation with a stable model was used to interpolate the water depths dataset. Finally a triangulated irregular network (TIN) model was used to visualize the resulting interpolation model. Calculated values of area and volume of a TIN model during 2011 were compared with values of supposed initial operation of the reservoir. The differences of water volume storage between these stages at 321 m water level was about 0.81 × 109 m3, where the lake lost around 10% of storage value. Also the results of depths lake model show that the change in water storage between March and July 2011 was about 3.08 × 109 m3.展开更多
文摘Not many bathymetric maps are available for many lakes and reservoirs in developing countries. Usually the bathymetric mapping requires investment in expensive equipment and fieldwork, both of which are not accessible in these countries. This work demonstrates the ability to develop bathymetric map of Mosul Lake by using a digital elevation model (DEM). The depths model of the lake was designed through the use of three main stages;a coastline extraction, dataset interpolation and a triangular irregular network model. The normalized difference water index (NDWI) was used for automatic delineation of the lake coastline from satellite images. The ordinary kriging interpolation with a stable model was used to interpolate the water depths dataset. Finally a triangulated irregular network (TIN) model was used to visualize the resulting interpolation model. Calculated values of area and volume of a TIN model during 2011 were compared with values of supposed initial operation of the reservoir. The differences of water volume storage between these stages at 321 m water level was about 0.81 × 109 m3, where the lake lost around 10% of storage value. Also the results of depths lake model show that the change in water storage between March and July 2011 was about 3.08 × 109 m3.