期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
bp(2)空间中的等距映射
1
作者 王瑞东 王普 《数学学报(中文版)》 CSCD 北大核心 2021年第1期155-166,共12页
度量与线性性质是赋范空间的重要性质,因此,研究线性算子与等距算子的关系成为了泛函分析领域重要的研究课题.本文首先研究一类特殊的赋准范空间,即bp(2)空间的重要性质.然后给出bp(2)空间单位球面间满等距映射的表示定理及延拓性质.
关键词 二维bp(2)空间 等距映射 线性延拓 表现定理
原文传递
复Banach空间lp(Γ)(1≤p<∞)的Mazur-Ulam性质
2
作者 王瑞东 周文乔 《数学学报(中文版)》 CSCD 北大核心 2021年第4期529-544,共16页
1978年,Tingley提出著名的Tingley问题(等距延拓问题),受到许多学者的重视.遗憾的是到目前为止,即使对于二维Banach空间,这个问题仍是一个开问题.目前的研究主要集中在同类型或不同类型的经典Banach空间之间,并得到了肯定的回答.本文对... 1978年,Tingley提出著名的Tingley问题(等距延拓问题),受到许多学者的重视.遗憾的是到目前为止,即使对于二维Banach空间,这个问题仍是一个开问题.目前的研究主要集中在同类型或不同类型的经典Banach空间之间,并得到了肯定的回答.本文对复Banach空间lp(Γ) (1≤p<∞)与复Banach空间E之间的Tingley问题给出了肯定的回答,即复Banach空间lp(r) (1≤p<∞)满足Mazur-Ulam性质. 展开更多
关键词 TINGLEY问题 Mazur-Ulam性质 复Banach空间lp(Γ)
原文传递
Isometries and Additive Mapping on the Unit Spheres of Normed Spaces 被引量:3
3
作者 rui dong wang Xu Jian HUANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2017年第10期1431-1442,共12页
In this paper, we investigate isometric extension problem in general normed space. We prove that an isometry between spheres can be extended to a linear isometry between the spaces if and only if the natural positive ... In this paper, we investigate isometric extension problem in general normed space. We prove that an isometry between spheres can be extended to a linear isometry between the spaces if and only if the natural positive homogeneous extension is additive on spheres. Moreover, this conclusion still holds provided that the additivity holds on a restricted domain of spheres. 展开更多
关键词 Isometric extension additive mapping unit sphere ANGLE
原文传递
On Extension of Isometries Between the Unit Spheres of Normed Space E and l^p(p>1) 被引量:1
4
作者 Ji Jin YI rui dong wang 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第7期1139-1144,共6页
In this paper, we study the extension of isometries between the unit spheres of normed space E and lP(p 〉 1). We arrive at a conclusion that any surjective isometry between the unit sphere of normed space lP(p 〉 ... In this paper, we study the extension of isometries between the unit spheres of normed space E and lP(p 〉 1). We arrive at a conclusion that any surjective isometry between the unit sphere of normed space lP(p 〉 1) and E can be extended to be a linear isometry on the whole space lP(p 〉 1) under some condition. 展开更多
关键词 isometric mapping isometric extension strictly convex
原文传递
A Remark on Extension of Into Isometries
5
作者 rui dong wang 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第1期203-208,共6页
In this paper, we prove that an into isometry form S(l(n)^∞) to S(E), which under some conditions, can be extended to be a linear isometry defined on the whole space. Therefore we improve the results of [Ding, ... In this paper, we prove that an into isometry form S(l(n)^∞) to S(E), which under some conditions, can be extended to be a linear isometry defined on the whole space. Therefore we improve the results of [Ding, G. G.: The isometric extension of an into mapping from the unit sphere S(l(2)^∞) to S(Lμ^1). Acta Mathematica Sinica, English Series, 22(6), 1721-1724 (2006)]. 展开更多
关键词 isometric extension Tingley's problem l(n)^∞-space
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部