An electrochemical method based on a directly electrochemically reduced graphene oxide (ERGO) film coated on a glassy carbon electrode (GCE) was developed for the rapid and convenient determination of rutin in pla...An electrochemical method based on a directly electrochemically reduced graphene oxide (ERGO) film coated on a glassy carbon electrode (GCE) was developed for the rapid and convenient determination of rutin in plasma. ERGO was modified on the surface of GCE by one-step electro-deposition method. Electrochemical behavior of rutin on ERGO/GCE indicated that rutin underwent a surface-controlled quasi-reversible process and the electrochemical parameters such as charge transfer coefficient (α), electron transfer number (n) and electrode reaction standard rate constant (ks) were 0.53, 2 and 3.4 s -1, respectively. The electrochemical sensor for rutin in plasma provided a wide linear response range of 4.70 × 10 ^-7 1.25 × 10^-5 M with the detection limit (s/n=3) of 1.84 × 10^-8 M. The assay was success- fully used to the pharmacokinetic study of rutin. The pharmacokinetic parameters such as elimination rate half-life (t1/2), area under curve (AUC), and plasma clearance (CL) were calculated to be 3.345 ± 0.647 rain, 5750 ±656.0 μg min/mL, and 5.891± 0.458 mL/min/kg, respectively. The proposed method utilized a small sample volume of 10 μL and had no complicated sample pretreatment (without deproteinization), which was simple, eco-friendly, and time- and cost-efficient for rutin pharmacokinetic studies.展开更多
基金support of the Project of Science and Technology Agency of Gansu (No.1208RTZA211) and Lanzhou(Nos. 2012-2-67 and 2013-4-75)
文摘An electrochemical method based on a directly electrochemically reduced graphene oxide (ERGO) film coated on a glassy carbon electrode (GCE) was developed for the rapid and convenient determination of rutin in plasma. ERGO was modified on the surface of GCE by one-step electro-deposition method. Electrochemical behavior of rutin on ERGO/GCE indicated that rutin underwent a surface-controlled quasi-reversible process and the electrochemical parameters such as charge transfer coefficient (α), electron transfer number (n) and electrode reaction standard rate constant (ks) were 0.53, 2 and 3.4 s -1, respectively. The electrochemical sensor for rutin in plasma provided a wide linear response range of 4.70 × 10 ^-7 1.25 × 10^-5 M with the detection limit (s/n=3) of 1.84 × 10^-8 M. The assay was success- fully used to the pharmacokinetic study of rutin. The pharmacokinetic parameters such as elimination rate half-life (t1/2), area under curve (AUC), and plasma clearance (CL) were calculated to be 3.345 ± 0.647 rain, 5750 ±656.0 μg min/mL, and 5.891± 0.458 mL/min/kg, respectively. The proposed method utilized a small sample volume of 10 μL and had no complicated sample pretreatment (without deproteinization), which was simple, eco-friendly, and time- and cost-efficient for rutin pharmacokinetic studies.