期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
In situ calibrated angle between the quantization axis and the propagating direction of the light field for trapping neutral atoms
1
作者 郭瑞军 何晓东 +7 位作者 盛诚 王坤鹏 许鹏 刘敏 王谨 孙晓红 曾勇 詹明生 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期318-323,共6页
The recently developed magic-intensity trapping technique of neutral atoms efficiently mitigates the detrimental effect of light shifts on atomic qubits and substantially enhances the coherence time. This technique re... The recently developed magic-intensity trapping technique of neutral atoms efficiently mitigates the detrimental effect of light shifts on atomic qubits and substantially enhances the coherence time. This technique relies on applying a bias magnetic field precisely parallel to the wave vector of a circularly polarized trapping laser field. However, due to the presence of the vector light shift experienced by the trapped atoms, it is challenging to precisely define a parallel magnetic field, especially at a low bias magnetic field strength, for the magic-intensity trapping of85Rb qubits. In this work, we present a method to calibrate the angle between the bias magnetic field and the trapping laser field with the compensating magnetic fields in the other two directions orthogonal to the bias magnetic field direction. Experimentally, with a constantdepth trap and a fixed bias magnetic field, we measure the respective resonant frequencies of the atomic qubits in a linearly polarized trap and a circularly polarized one via the conventional microwave Rabi spectra with different compensating magnetic fields and obtain the corresponding total magnetic fields via the respective resonant frequencies using the Breit–Rabi formula. With known total magnetic fields, the angle is a function of the other two compensating magnetic fields.Finally, the projection value of the angle on either of the directions orthogonal to the bias magnetic field direction can be reduced to 0(4)° by applying specific compensating magnetic fields. The measurement error is mainly attributed to the fluctuation of atomic temperature. Moreover, it also demonstrates that, even for a small angle, the effect is strong enough to cause large decoherence of Rabi oscillation in a magic-intensity trap. Although the compensation method demonstrated here is explored for the magic-intensity trapping technique, it can be applied to a variety of similar precision measurements with trapped neutral atoms. 展开更多
关键词 quantization axis trapping laser ANGLE compensating magnetic fields
下载PDF
High-Fidelity Manipulation of the Quantized Motion of a Single Atom via Stern-Gerlach Splitting 被引量:1
2
作者 Kun-Peng Wang Jun Zhuang +6 位作者 Xiao-Dong He rui-jun guo Cheng Sheng Peng Xu Min Liu Jin Wang Ming-Sheng Zhan 《Chinese Physics Letters》 SCIE CAS CSCD 2020年第4期75-79,共5页
We demonstrate high-fidelity manipulation of the quantized motion of a single87Rb atom in an optical tweezer via microwave couplings induced by Stern–Gerlach splitting. The Stern–Gerlach splitting is mediated by pol... We demonstrate high-fidelity manipulation of the quantized motion of a single87Rb atom in an optical tweezer via microwave couplings induced by Stern–Gerlach splitting. The Stern–Gerlach splitting is mediated by polarization gradient of a strongly focused tweezer beam that functions as fictitious magnetic field gradient. The spatial splitting removes the orthogonality of the atomic spatial wavefunctions, thus enables the microwave couplings between the motional states. We obtain coherent Rabi oscillations for up to third-order sideband transitions, in which a high fidelity of larger than 0.99 is obtained for the spin-flip transition on the first order sideband after subtraction of the state preparation and detection error. The Stern–Gerlach splitting is measured at a precision of better than 0.05 nm. This work paves the way for quantum engineering of motional states of single atoms, and may have wide applications in few body physics and ultracold chemistry. 展开更多
关键词 chemistry. SPLITTING microwave
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部