期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A novel seed cone of Pinus from the Miocene of coastal Southeast China indicates kinship with Southeast Asian pines
1
作者 Xiang-Chuan Li Yi Hu +4 位作者 Xiang zhang Liang Xiao Li-Na Liang rui-zhi zhang Lei Qiao 《Plant Diversity》 SCIE CAS CSCD 2023年第6期732-747,共16页
Pinus is an economically and ecologically important genus whose members are dominant components globally in low-latitude mountainous and mid-latitude temperate forests.Pinus species richness is currently concentrated ... Pinus is an economically and ecologically important genus whose members are dominant components globally in low-latitude mountainous and mid-latitude temperate forests.Pinus species richness is currently concentrated in subtropical mid-low latitudes of the Northern Hemisphere,differing from the latitudinal diversity gradient mostly recognized in woody angiosperms.How the present pattern was developing in Earth's past is still poorly studied,particularly in eastern Asia.Here,a new fossil species,Pinus shengxianica sp.nov.is described based on a fossil seed cone from the Late Miocene Shengxian Formation in Zhejiang,southeast China.A co-occurring cone is recognized as a known fossil species,Pinus speciosa Li.Extensive comparison of extant and fossil members of Pinus suggests P.shengxianica shares a striking cone similarity to Pinus merkusii and Pinus latteri(subsection Pinus)from tropical Southeast Asia in having annular bulges around the umbo on the apophysis.The morphological resemblance indicates these two extant low-latitude pines probably possess a close affinity with the present newly-discovered P.shengxianica and originated from East Asian mid-low latitude ancestors during this generic re-diversification in the Miocene.This scenario is consistent with the evolutionary trajectory reflected by the pine fossil history and molecular data,marking the Miocene as a key period for the origin and evolution of most extant pines globally.The co-occurrences of diverse conifers and broadleaved angiosperms preferring diverse niches demonstrate Late Miocene eastern Zhejiang was one of the hot spots for coniferophyte diversity and hosted a needled-broadleaved mixed forest with complex vegetation structure and an altitudinal zonation. 展开更多
关键词 Fossil cones PINUS Southeast China MIOCENE Phytogeography PALEOECOLOGY
下载PDF
Synthesis and Compressive Response of Microcellular Foams Fabricated from Thermally Expandable Microspheres 被引量:3
2
作者 rui-zhi zhang Ju Chen +6 位作者 Mao-Wei Huang Jian zhang Guo-Qiang Luo Bao-Zhen Wang Mei-Juan Li Qiang Shen Lian-Meng zhang 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2019年第3期279-288,共10页
Cellular foams are widely applied as protective and energy absorption materials in both civil and military fields. A facile and simple one-step heating method to fabricate polymeric foams is measured by adopting therm... Cellular foams are widely applied as protective and energy absorption materials in both civil and military fields. A facile and simple one-step heating method to fabricate polymeric foams is measured by adopting thermally expandable microspheres(TEMs). The ideal foaming parameters for various density foams were determined. Moreover, a mechanical testing machine and split Hopkinson bar(SHPB) were utilized to explore the quasi-static and dynamic compressive properties. Results showed that the cell sizes of the as-prepared TEMs foams were in the micrometer range of 11 μm to 20 μm with a uniform cell size distribution. All the foams exhibited good compressive behavior under both quasi-static and high strain rate conditions, and were related to both foam densities and strain rates. The compressive strength of the TEMs foams at 8400s^(-1) was up to 4 times higher than that at 10^(-4)s^(-1). The effects exerted by the strain rate and sample density were evaluated by a power law equation. With increasing density, the strain rate effect was more prominent. At quasistatic strain rates below 3000s^(-1) regime, initial cell wall buckling and subsequent cellular structure flattening were the main failure mechanisms. However, in the high strain rate(HSR) regime(above 5000s^(-1)), the foams were split into pieces by the following transverse inertia force. 展开更多
关键词 Thermally EXPANDABLE MICROSPHERES COMPRESSIVE RESPONSE Split Hopkinson bar(SHPB) MICROCELLULAR Failure mechanism
原文传递
Suppression of vortex rope oscillation and pressure vibrations in Francis turbine draft tube using various strategies 被引量:2
3
作者 Lei Zhu rui-zhi zhang +2 位作者 An Yu Li Lu Xian-wu Luo 《Journal of Hydrodynamics》 SCIE EI CSCD 2021年第3期534-545,共12页
The vortex rope usually occurs in the draft tube of the Francis turbine operated under part-load conditions,to induce strong low-frequency pressure vibrations,and therefore,is very harmful to the safety of the hydropo... The vortex rope usually occurs in the draft tube of the Francis turbine operated under part-load conditions,to induce strong low-frequency pressure vibrations,and therefore,is very harmful to the safety of the hydropower unit.In the present work,three kinds of strategies are extensively investigated,i.e.,the installations of the ventilation and the fin,as well as the hybrid strategy of the air admission through a fin,so as to effectively suppress the vortex rope oscillation and the pressure vibration in the draft tube of a Francis turbine,whose specific speed is 125 m-kW.For the unsteady flow simulation,the Reynolds averaged Navier-Stokes(RANS)method is applied coupled with the k-ω SST turbulence model and a homogeneous cavitation model.The flow analysis confirms that the low-frequency pressure vibrations are originated from the periodical oscillation of the vortex rope,and the cavitation usually enhances the vortex rope oscillation in the draft tube.Under the part-load condition,the dominant component of the pressure vibration in the draft tube has a frequency,for example,f_(1),lower than the runner rotating frequency f_(n).It is shown that all three strategies can be adopted to alleviate the vortex rope oscillation and the pressure vibrations in the draft tube,but their suppression mechanisms are quite different.The ventilation of an adequate amount from the turbine runner cone can change the vortex rope geometry from the spiral type to the cylindrical type,suppress the vortex rope oscillation,and consequently create the homogeneous distributions of the pressure and the pressure gradient in the draft tube.On the other hand,a fin installed at the draft tube wall can induce a small extra rope,and the interaction between the main vortex rope and the extra rope changes the flow field and alleviates the pressure vibration in the draft tube.It should be noted that a fin is much more effective to suppress the pressure vibration in the draft tube under the cavitation condition than under the non-cavitation condition.A better effect of suppressing the vortex rope oscillation can be achieved by the air admission through a fin,which is studied numerically in this paper.The result indicates that the air admission can further improve the effect of a fin for suppressing the pressure vibration in the inlet cone of the draft tube.This improvement is due to the stronger interaction between the main vortex rope and the extra air rope.However,the air admission through a fin should be carefully treated because the strong interaction may induce a larger pressure vibration in the elbow of the draft tube.Finally,it is clear that any strategy for suppressing the pressure vibration hardly changes the dominant component frequency f_(1),which is in the range of 0.22 f_(n)-0.23 f_(n) due to the main vortex rope oscillation in this study.The current results may be used in various engineering applications,where the active control of the vortex oscillation and the pressure vibrations with or without the cavitation is necessary. 展开更多
关键词 Francis turbine vortex rope pressure vibration ventilation fin installation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部