To understand and help settle the controversy around the living time of Pinnatiramosus qianensis Geng, a paleo-weathering profile situated in the town of Yongle near the city of Zunyi, north Guizhou Province, China, w...To understand and help settle the controversy around the living time of Pinnatiramosus qianensis Geng, a paleo-weathering profile situated in the town of Yongle near the city of Zunyi, north Guizhou Province, China, was analyzed. The profile formed during a break in sedimentation between the Early Silurian and the Early Permian.Paleosol developed with a depth of several meters. The fossil plant P. qianensis Geng is present, but only in the lower portions(Layer 2) of the paleosol. Another plant with an irregularly branching system is found in Layers 2and 3. The distinct geochemical characteristics of the lower and upper portions of the Gaojiayan paleosol indicate a compound genesis. Its lower portions(Layers 1 and 2)resulted from in situ weathering of silty mudstone of the lower Silurian Hanjiadian Formation. The upper portions(Layer 3) are allochthonous. Transgression brought substantial concentrations K and Na, and led to K- and Naenrichment in the profile. Pumping of vascular plants and downward leaching enhanced the K enrichment in the middle portions. A superior preservation of P. qianensis Geng was observed in an exposure of Layer 2. Mass balance calculation indicates a great K enrichment related to bioaccumulation in the top of Layer 2 and a K loss in Layer3. Fossil plants(e.g., P. qianensis Geng) preserved in the paleosol are Permian rooting systems growing down into the lower Silurian rocks.展开更多
Introduction Since Ge isotope is a new nontraditional isotope,the accumulated Ge isotope literatures are quite limited.The available researches mainly focused on two aspects:(1)the measurement of Ge isotopic compositi...Introduction Since Ge isotope is a new nontraditional isotope,the accumulated Ge isotope literatures are quite limited.The available researches mainly focused on two aspects:(1)the measurement of Ge isotopic compositions of geological and extraterrestrial materials,such as igneous rocks,marine sediments,seafloor hydrothermal fluids,hydrothermal Fe-oxyhydroxides,terrestrial high-temperature geothermal fluids,sphalerite,and iron meteorites;and(2)theoretical prediction of germanium isotope fractionation.展开更多
基金supported by the 12th FiveYear Plan Project of State Key Laboratory of Ore Deposit Geochemistry, Chinese Academy of Sciences (SKLODG-ZY125-08)funds from the State Key Laboratory of Palaeobiology and Stratigraphy, Chinese Academy of Sciencesthe National Basic Research Program of China (2007CB411408)
文摘To understand and help settle the controversy around the living time of Pinnatiramosus qianensis Geng, a paleo-weathering profile situated in the town of Yongle near the city of Zunyi, north Guizhou Province, China, was analyzed. The profile formed during a break in sedimentation between the Early Silurian and the Early Permian.Paleosol developed with a depth of several meters. The fossil plant P. qianensis Geng is present, but only in the lower portions(Layer 2) of the paleosol. Another plant with an irregularly branching system is found in Layers 2and 3. The distinct geochemical characteristics of the lower and upper portions of the Gaojiayan paleosol indicate a compound genesis. Its lower portions(Layers 1 and 2)resulted from in situ weathering of silty mudstone of the lower Silurian Hanjiadian Formation. The upper portions(Layer 3) are allochthonous. Transgression brought substantial concentrations K and Na, and led to K- and Naenrichment in the profile. Pumping of vascular plants and downward leaching enhanced the K enrichment in the middle portions. A superior preservation of P. qianensis Geng was observed in an exposure of Layer 2. Mass balance calculation indicates a great K enrichment related to bioaccumulation in the top of Layer 2 and a K loss in Layer3. Fossil plants(e.g., P. qianensis Geng) preserved in the paleosol are Permian rooting systems growing down into the lower Silurian rocks.
文摘Introduction Since Ge isotope is a new nontraditional isotope,the accumulated Ge isotope literatures are quite limited.The available researches mainly focused on two aspects:(1)the measurement of Ge isotopic compositions of geological and extraterrestrial materials,such as igneous rocks,marine sediments,seafloor hydrothermal fluids,hydrothermal Fe-oxyhydroxides,terrestrial high-temperature geothermal fluids,sphalerite,and iron meteorites;and(2)theoretical prediction of germanium isotope fractionation.