期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
High quality PdTe_2 thin films grown by molecular beam epitaxy 被引量:1
1
作者 En Li rui-zi zhang +9 位作者 Hang Li Chen Liu Geng Li Jia-Ou Wang Tian Qian Hong Ding Yu-Yang zhang Shi-Xuan Du Xiao Lin Hong-Jun Gao 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第8期72-76,共5页
PdTe2, a member of layered transition metal dichalcogenides (TMDs), has aroused significant research interest due to the coexistence of superconductivity and type-II Dirac fermions. It provides a promising platform ... PdTe2, a member of layered transition metal dichalcogenides (TMDs), has aroused significant research interest due to the coexistence of superconductivity and type-II Dirac fermions. It provides a promising platform to explore the inter- play between superconducting quasiparticles and Dirac fermions. Moreover, PdTe2 has also been used as a substrate for monolayer antimonene growth. Here in this paper, we report the epitaxial growth of high quality PdTe2 films on bilayer graphene/SiC(0001) by molecular beam epitaxy (MBE). Atomically thin films are characterized by scanning tunneling microscopy (STM), X-ray photoemission spectroscopy (XPS), low-energy electron diffraction (LEED), and Raman spec- troscopy. The band structure of 6-layer PdTe2 film is measured by angle-resolved photoemission spectroscopy (ARPES). Moreover, our air exposure experiments show excellent chemical stability of epitaxial PdTe2 film. High-quality PdTe2 films provide opportunities to build antimonene/PdTe2 heterostructure in ultrahigh vacuum for future applications in electronic and optoelectronic nanodevices. 展开更多
关键词 two-dimensional materials transition-metal dichalcogenides PdTe2 molecular beam epitaxy
下载PDF
Epitaxial synthesis and electronic properties of monolayer Pd2Se3
2
作者 Peng Fan rui-zi zhang +11 位作者 Jing Qi En Li Guo-Jian Qian Hui Chen Dong-Fei Wang Qi Zheng Qin Wang Xiao Lin Yu-Yang zhang Shixuan Du Hofer W A Hong-Jun Gao 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第9期543-548,共6页
Two-dimensional(2D)materials received large amount of studies because of the enormous potential in basic science and industrial applications.Monolayer Pd2Se3 is a fascinating 2D material that was predicted to possess ... Two-dimensional(2D)materials received large amount of studies because of the enormous potential in basic science and industrial applications.Monolayer Pd2Se3 is a fascinating 2D material that was predicted to possess excellent thermoelectric,electronic,transport,and optical properties.However,the fabrication of large-scale and high-quality monolayer Pd2Se3 is still challenging.Here,we report the synthesis of large-scale and high-quality monolayer Pd2Se3 on graphene-SiC(0001)by a two-step epitaxial growth.The atomic structure of Pd2Se3 was investigated by scanning tunneling microscope(STM)and confirmed by non-contact atomic force microscope(nc-AFM).Two subgroups of Se atoms have been identified by nc-AFM image in agreement with the theoretically predicted atomic structure.Scanning tunneling spectroscopy(STS)reveals a bandgap of 1.2 eV,suggesting that monolayer Pd2Se3 can be a candidate for photoelectronic applications.The atomic structure and defect levels of a single Se vacancy were also investigated.The spatial distribution of STS near the Se vacancy reveals a highly anisotropic electronic behavior.The two-step epitaxial synthesis and characterization of Pd2Se3 provide a promising platform for future investigations and applications. 展开更多
关键词 2D material Pd2Se3 scanning tunneling microscope/spectroscopy non-contact atomic force microscope
下载PDF
Thickness-dependent magnetic order and phase transition in V5S8
3
作者 rui-zi zhang Yu-Yang zhang Shi-Xuan Du 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第7期516-520,共5页
V5S8 is an ideal candidate to explore the magnetism at the two-dimensional(2D)limit.A recent experiment has shown that the V5S8 thin films exhibit an antiferromagnetic(AFM)to ferromagnetic(FM)phase transition with red... V5S8 is an ideal candidate to explore the magnetism at the two-dimensional(2D)limit.A recent experiment has shown that the V5S8 thin films exhibit an antiferromagnetic(AFM)to ferromagnetic(FM)phase transition with reducing thickness.Here,for the first time,using density functional theory calculations,we report the antiferromagnetic order of bulk V5S8,which is consistent with the previous experiments.The specific antiferromagnetic order is reproduced when Ueff=2 eV is applied on the intercalated vanadium atoms within LDA.We find that the origin of the magnetic ordering is from superexchange interaction.We also investigate the thickness-dependent magnetic order in V5S8 thin films.It is found that there is an antiferromagnetic to ferromagnetic phase transition when V5S8 is thinned down to 2.2 nm.The main magnetic moments of the antiferromagnetic and ferromagnetic states of the thin films are located on the interlayered vanadium atoms,which is the same as that in the bulk.Meanwhile,the strain in the thin films also influences the AFM-FM phase transition.Our results not only reveal the magnetic order and origin in bulk V5S8 and thin films,but also provide a set of parameters which can be used in future calculations. 展开更多
关键词 V5S8 superexchange interaction AFM-FM phase transition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部