The high temperature tensile and fracture behavior of Zr50Al40Cu10 metallic glass at the temperature range in the vicinity of glass transition were investigated. Tensile tests were carried out at room temperature, 350...The high temperature tensile and fracture behavior of Zr50Al40Cu10 metallic glass at the temperature range in the vicinity of glass transition were investigated. Tensile tests were carried out at room temperature, 350-420 ℃, and in the supercooled liquid region temperature range, respectively. Obvious plastic deformation was initiated at temperature about 80 °C lower than the glass transition temperature. The ultimate tensile strength decreases with the increase of testing temperature and the ductility increases with temperature. At temperature higher than Tg, viscous flow of Non-Newtonian fluid led to super plastic deformation behavior. The deformation process under tension was inhomogeneous, and remarkable serrations were observed on the stress-strain curve near glass transition temperature.展开更多
Zr-based metallic glasses(MGs)possess a wide supercooled liquid region,which gives a wide processing window for superplastic forming to make microdevices with demanding size accuracy and surface finishing.The existenc...Zr-based metallic glasses(MGs)possess a wide supercooled liquid region,which gives a wide processing window for superplastic forming to make microdevices with demanding size accuracy and surface finishing.The existence of oxygen may have an influence on the thermoplastic deformation process.Therefore,the effect of oxidation on the mechanical behavior of the MGs in the vicinity of glass transition temperature is of great significance for practical forming of MG components.In the present study,the effect of oxidation on tensile properties of Zr50Cu40Al10 metallic glass was investigated.The tested samples were characterized by XRD and SEM analysis.For the samples tested in air,the strength decreases 187 MPa,61 MPa and 59 MPa and the ductility increases 0.31,0.36,and 0.77 at 420℃,430℃,and 440℃,respectively,compared with those tested in flowing argon.ZrO_(2) preferentially formed during the tensile testing at 420℃,and both ZrO_(2) and Al_(2)O_(3) oxides formed at 430℃.The dilution of Zr elements in the remaining amorphous matrix caused by preferential oxidation on the surface layer attributes to the decrease in strength and enhancement in ductility of the Zr_(50)Cu_(40)Al_(10) metallic glasses.展开更多
The influence of the refilled gas pressure on the glass forming behaviour of one of the best ternary glass forming alloys Zr50Cu40Al10 was studied for the melt spinning process. The amorphicity of as-quenched ribbons ...The influence of the refilled gas pressure on the glass forming behaviour of one of the best ternary glass forming alloys Zr50Cu40Al10 was studied for the melt spinning process. The amorphicity of as-quenched ribbons was characterized by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The refilled chamber atmospheric pressure is crucial to the cooling rate of melt spinning. At high vacuum, at pressure less than 0.0001 atm, fully crystalline fragments are obtained. Monolithic amorphous ribbons were only obtained at a gas pressure of 0.1 atm or higher. The extended contact length between thecribbons and the copper wheel contributes to the high cooling rate of melt spinning. Higher chamber gas pressure leads to more turbulence of liquid metal beneath the nozzle; therefore, lower pressure is preferable at practical melt spinning processes once glass forming conditions are fulfilled.展开更多
基金financially supported by the National Natural Sciences Foundation of China(Grant No.51171119 and No.51401129)
文摘The high temperature tensile and fracture behavior of Zr50Al40Cu10 metallic glass at the temperature range in the vicinity of glass transition were investigated. Tensile tests were carried out at room temperature, 350-420 ℃, and in the supercooled liquid region temperature range, respectively. Obvious plastic deformation was initiated at temperature about 80 °C lower than the glass transition temperature. The ultimate tensile strength decreases with the increase of testing temperature and the ductility increases with temperature. At temperature higher than Tg, viscous flow of Non-Newtonian fluid led to super plastic deformation behavior. The deformation process under tension was inhomogeneous, and remarkable serrations were observed on the stress-strain curve near glass transition temperature.
基金financially supported by the National Natural Science Foundation of China(Grant No.51801208)the Joint Research Fund of Natural Science Foundation of Liaoning Province-State Key Laboratory of Rolling and Automation(Grant No.2019-KF-05-05)。
文摘Zr-based metallic glasses(MGs)possess a wide supercooled liquid region,which gives a wide processing window for superplastic forming to make microdevices with demanding size accuracy and surface finishing.The existence of oxygen may have an influence on the thermoplastic deformation process.Therefore,the effect of oxidation on the mechanical behavior of the MGs in the vicinity of glass transition temperature is of great significance for practical forming of MG components.In the present study,the effect of oxidation on tensile properties of Zr50Cu40Al10 metallic glass was investigated.The tested samples were characterized by XRD and SEM analysis.For the samples tested in air,the strength decreases 187 MPa,61 MPa and 59 MPa and the ductility increases 0.31,0.36,and 0.77 at 420℃,430℃,and 440℃,respectively,compared with those tested in flowing argon.ZrO_(2) preferentially formed during the tensile testing at 420℃,and both ZrO_(2) and Al_(2)O_(3) oxides formed at 430℃.The dilution of Zr elements in the remaining amorphous matrix caused by preferential oxidation on the surface layer attributes to the decrease in strength and enhancement in ductility of the Zr_(50)Cu_(40)Al_(10) metallic glasses.
基金financially supported by the National Natural Science Foundation of China(No.51171119)the Natural Science Foundation of Liaoning Province(No.2013020084)+1 种基金Higher Education Youth Talent Scholar Fostering Project of Liaoning Province(No.LJQ2014015)Project of Shenyang Bureau of Science and Technological Development(No.1091177-1-00)
文摘The influence of the refilled gas pressure on the glass forming behaviour of one of the best ternary glass forming alloys Zr50Cu40Al10 was studied for the melt spinning process. The amorphicity of as-quenched ribbons was characterized by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The refilled chamber atmospheric pressure is crucial to the cooling rate of melt spinning. At high vacuum, at pressure less than 0.0001 atm, fully crystalline fragments are obtained. Monolithic amorphous ribbons were only obtained at a gas pressure of 0.1 atm or higher. The extended contact length between thecribbons and the copper wheel contributes to the high cooling rate of melt spinning. Higher chamber gas pressure leads to more turbulence of liquid metal beneath the nozzle; therefore, lower pressure is preferable at practical melt spinning processes once glass forming conditions are fulfilled.