BACKGROUND Drug-induced liver injury(DILI)is one of the most common adverse events of medication use,and its incidence is increasing.However,early detection of DILI is a crucial challenge due to a lack of biomarkers a...BACKGROUND Drug-induced liver injury(DILI)is one of the most common adverse events of medication use,and its incidence is increasing.However,early detection of DILI is a crucial challenge due to a lack of biomarkers and noninvasive tests.AIM To identify salivary metabolic biomarkers of DILI for the future development of noninvasive diagnostic tools.METHODS Saliva samples from 31 DILI patients and 35 healthy controls(HCs)were subjected to untargeted metabolomics using ultrahigh-pressure liquid chromatography coupled with tandem mass spectrometry.Subsequent analyses,including partial least squares-discriminant analysis modeling,t tests and weighted metabolite coexpression network analysis(WMCNA),were conducted to identify key differentially expressed metabolites(DEMs)and metabolite sets.Furthermore we utilized least absolute shrinkage and selection operato and random fores analyses for biomarker prediction.The use of each metabolite and metabolite set to detect DILI was evaluated with area under the receiver operating characteristic curves.RESULTS We found 247 differentially expressed salivary metabolites between the DILI group and the HC group.Using WMCNA,we identified a set of 8 DEMs closely related to liver injury for further prediction testing.Interestingly,the distinct separation of DILI patients and HCs was achieved with five metabolites,namely,12-hydroxydodecanoic acid,3-hydroxydecanoic acid,tetradecanedioic acid,hypoxanthine,and inosine(area under the curve:0.733-1).CONCLUSION Salivary metabolomics revealed previously unreported metabolic alterations and diagnostic biomarkers in the saliva of DILI patients.Our study may provide a potentially feasible and noninvasive diagnostic method for DILI,but further validation is needed.展开更多
Objective To explore the active components with toxic effects in five Aconitum L. herbal medicines on Tetrahymena thermophila. Methods The fingerprints of five Aconitum L. herbal medicines were established by ultra-hi...Objective To explore the active components with toxic effects in five Aconitum L. herbal medicines on Tetrahymena thermophila. Methods The fingerprints of five Aconitum L. herbal medicines were established by ultra-high performance liquid chromatography (UPLC) and the toxicity was evaluated by using a TAM Air Isothermal Calorimeter on Tetrahymena thermophila SB1 10. Results By analyzing the spectrum- effect relationships between UPLC fingerprints and toxic effects, the active components which had the toxic effects were obtained. Conclusion This work provides a general model of the combination of UPLC and microcalorimetry to study the spectrum-effect relationships of the five Aconitum L. herbal medicines, which could be used to evaluate the toxic effects and analyze the principal toxic components of the five Aconitum L. herbal medicines. On the whole, this result provides the experimental basis for the safe use of the five Aconitum L. herbal medicines in clinic.展开更多
基金Supported by Medical Education Association Foundation of China,No.2020KTY001National Natural Science Foundation of China,No.81673806National Natural Science Foundation Youth Fund,No.82104702.
文摘BACKGROUND Drug-induced liver injury(DILI)is one of the most common adverse events of medication use,and its incidence is increasing.However,early detection of DILI is a crucial challenge due to a lack of biomarkers and noninvasive tests.AIM To identify salivary metabolic biomarkers of DILI for the future development of noninvasive diagnostic tools.METHODS Saliva samples from 31 DILI patients and 35 healthy controls(HCs)were subjected to untargeted metabolomics using ultrahigh-pressure liquid chromatography coupled with tandem mass spectrometry.Subsequent analyses,including partial least squares-discriminant analysis modeling,t tests and weighted metabolite coexpression network analysis(WMCNA),were conducted to identify key differentially expressed metabolites(DEMs)and metabolite sets.Furthermore we utilized least absolute shrinkage and selection operato and random fores analyses for biomarker prediction.The use of each metabolite and metabolite set to detect DILI was evaluated with area under the receiver operating characteristic curves.RESULTS We found 247 differentially expressed salivary metabolites between the DILI group and the HC group.Using WMCNA,we identified a set of 8 DEMs closely related to liver injury for further prediction testing.Interestingly,the distinct separation of DILI patients and HCs was achieved with five metabolites,namely,12-hydroxydodecanoic acid,3-hydroxydecanoic acid,tetradecanedioic acid,hypoxanthine,and inosine(area under the curve:0.733-1).CONCLUSION Salivary metabolomics revealed previously unreported metabolic alterations and diagnostic biomarkers in the saliva of DILI patients.Our study may provide a potentially feasible and noninvasive diagnostic method for DILI,but further validation is needed.
基金State Natural Science Foundation(81173571)The"Twelfth Five-Year Plan"Foundation of China People’s Liberation Army(CWS11C164)The Major Projects of the National Science and Technology(2012ZX10005010-002-002)
文摘Objective To explore the active components with toxic effects in five Aconitum L. herbal medicines on Tetrahymena thermophila. Methods The fingerprints of five Aconitum L. herbal medicines were established by ultra-high performance liquid chromatography (UPLC) and the toxicity was evaluated by using a TAM Air Isothermal Calorimeter on Tetrahymena thermophila SB1 10. Results By analyzing the spectrum- effect relationships between UPLC fingerprints and toxic effects, the active components which had the toxic effects were obtained. Conclusion This work provides a general model of the combination of UPLC and microcalorimetry to study the spectrum-effect relationships of the five Aconitum L. herbal medicines, which could be used to evaluate the toxic effects and analyze the principal toxic components of the five Aconitum L. herbal medicines. On the whole, this result provides the experimental basis for the safe use of the five Aconitum L. herbal medicines in clinic.