Water quality sensor networks are widely used in water resource monitoring.However,due to the fact that the energy of these networks cannot be supplemented in time,it is necessary to study effective routing protocols ...Water quality sensor networks are widely used in water resource monitoring.However,due to the fact that the energy of these networks cannot be supplemented in time,it is necessary to study effective routing protocols to extend their lifecycle.To address the problem of limited resources,a routing optimization algorithm based on a small-world network model is proposed.In this paper,a small-world network model is introduced for water quality sensor networks,in which the short average path and large clustering coefficient of the model are used to construct a super link.A short average path can reduce the network’s energy consumption,and a large coefficient can improve its fault-tolerance ability.However,the energy consumption of the relay nodes near the heterogeneous node is too great,and as such the energy threshold and non-uniform clustering are constructed to improve the lifecycle of the network.Simulation results show that,compared with the low-energy adaptive clustering hierarchy routing algorithm and the best sink location clustering heterogeneous network routing algorithm,the proposed improved routing model can effectively enhance the energy-utilization.The lifecycle of the network can be extended and the data transmission amount can be greatly increased.展开更多
Water quality sensor networks are promising tools for the exploration of oceans.Some key areas need to be monitored effectively.Water quality sensors are deployed randomly or uniformly,however,and understanding how to...Water quality sensor networks are promising tools for the exploration of oceans.Some key areas need to be monitored effectively.Water quality sensors are deployed randomly or uniformly,however,and understanding how to deploy sensor nodes reasonably and realize effective monitoring of key areas on the basis of monitoring the whole area is an urgent problem to be solved.Additionally,energy is limited in water quality sensor networks.When moving sensor nodes,we should extend the life cycle of the sensor networks as much as possible.In this study,sensor nodes in non-key monitored areas are moved to key areas.First,we used the concentric circle method to determine the mobile sensor nodes and the target locations.Then,we determined the relationship between the mobile sensor nodes and the target locations according to the energy matrix.Finally,we calculated the shortest moving path according to the Floyd algorithm,which realizes the redeployment of the key monitored area.The simulation results showed that,compared with the method of direct movement,the proposed method can effectively reduce the energy consumption and save the network adjustment time based on the effective coverage of key areas.展开更多
Underwater sensor networks have important application value in the fields of water environment data collection,marine environment monitoring and so on.It has some characteristics such as low available bandwidth,large ...Underwater sensor networks have important application value in the fields of water environment data collection,marine environment monitoring and so on.It has some characteristics such as low available bandwidth,large propagation delays and limited energy,which bring new challenges to the current researches.The research on coverage control of underwater sensor networks is the basis of other related researches.A good sensor node coverage control method can effectively improve the quality of water environment monitoring.Aiming at the problem of high dynamics and uncertainty of monitoring targets,the random events level are divided into serious events and general events.The sensors are set to sense different levels of events and make different responses.Then,an event-driven optimization algorithm for determining sensor target location based on self-organization map is proposed.Aiming at the problem of limited energy of underwater sensor nodes,considering the moving distance,coverage redundancy and residual energy of sensor nodes,an underwater sensor movement control algorithm based on residual energy probability is proposed.The simulation results show that compared with the simple movement algorithm,the proposed algorithm can effectively improve the coverage and life cycle of the sensor networks,and realize real-time monitoring of the water environment.展开更多
Wireless sensor networks(WSN)can be used in many fields.In wireless sensor networks,sensor nodes transmit data in multi hop mode.The large number of hops required by data transmission will lead to unbalanced energy co...Wireless sensor networks(WSN)can be used in many fields.In wireless sensor networks,sensor nodes transmit data in multi hop mode.The large number of hops required by data transmission will lead to unbalanced energy consumption and large data transmission delay of the whole network,which greatly affects the invulnerability of the network.Therefore,an optimal deployment of heterogeneous nodes(ODHN)algorithm is proposed to enhance the invulnerability of the wireless sensor networks.The algorithm combines the advantages of DEEC(design of distributed energy efficient clustering)clustering algorithm and BAS(beetle antenna search)optimization algorithm to find the globally optimal deployment locations of heterogeneous nodes.Then,establish a shortcut to communicate with sink nodes through heterogeneous nodes.Besides,considering the practical deployment operation,we set the threshold of the mobile location of heterogeneous nodes,which greatly simplifies the deployment difficulty.Simulation results show that compared with traditional routing protocols,the proposed algorithm can make the network load more evenly,and effectively improve energy-utilization and the fault tolerance of the whole network,which can greatly improve the invulnerability of the wireless sensor networks.展开更多
Wireless Sensor Network(WSN)is an important part of the Internet of Things(IoT),which are used for information exchange and communication between smart objects.In practical applications,WSN lifecycle can be influenced...Wireless Sensor Network(WSN)is an important part of the Internet of Things(IoT),which are used for information exchange and communication between smart objects.In practical applications,WSN lifecycle can be influenced by the unbalanced distribution of node centrality and excessive energy consumption,etc.In order to overcome these problems,a heterogeneous wireless sensor network model with small world characteristics is constructed to balance the centrality and enhance the invulnerability of the network.Also,a new WSN centrality measurement method and a new invulnerability measurement model are proposed based on the WSN data transmission characteristics.Simulation results show that the life cycle and data transmission volume of the network can be improved with a lower network construction cost,and the invulnerability of the network is effectively enhanced.展开更多
An equiatomic CoCrFeNiMn High Entropy Alloy(HEA)was in-situ deposited by the powder-bed arc ad-ditive manufacturing(PBAAM)process for the first time.Comparative research was conducted on the evolution of phase,crystal...An equiatomic CoCrFeNiMn High Entropy Alloy(HEA)was in-situ deposited by the powder-bed arc ad-ditive manufacturing(PBAAM)process for the first time.Comparative research was conducted on the evolution of phase,crystallographic orientation,dislocation morphology,precipitation,and mechanical performance with the accumulation of inter-layer remelting times.The experimental outcomes mani-fested that the PBAAMed CoCrFeNiMn HEA consists of a stable solid-solution FCC structure,with de-creased lattice parameter but slightly increased(full width at half maximum)FWHM as the accumulation of the inter-layer remelting.The{001}<100>cube texture with a weakened texture intensity was de-tected with an increment of inter-layer remelting frequency from once to 5 times,yet it was transformed into{011}<100>Goss texture with a further increase to 7 times.Additionally,the mean grain diameter distinctly decreased,while the volume fraction of(low angle grain boundaries)LAGBs and dislocation density remarkably added up as the accumulated inter-layer remelts.Predominant cellular substructure generated in all process conditions and could be easily differentiated by elemental segregation.Both theσand M 23 C 6 Cr-rich precipitates in nano-scale and submicron MnS precipitate were detected on the grain boundaries of the PBAAMed deposited components,with a rather sparse distribution.Speaking of mechanical performance,the YS,UTS,and hardening rate are generally increased while the UE is grad-ually decreased as increased inter-layer remelting times.The studied PBAAMed CoCrFeNiMn HEA pos-sesses comparable mechanical performances with the counterparts of laser-deposited and as-cast ones.The strengthening mechanisms of the studied material are predominantly the grain boundary strength-ening and dislocation strengthening.This investigation would be a valuable resource in the research field of fabricating HEA alloys with acceptable microstructure and properties using the PBAAM method.展开更多
基金This research was funded by the National Natural Science Foundation of China(Grant No.61802010)Hundred-Thousand-Ten-Thousand Talents Project of Beijing(Grant No.2020A28)+1 种基金National Social Science Fund of China(Grant No.19BGL184)Beijing Excellent Talent Training Support Project for Young Top-Notch Team(Grant No.2018000026833TD01).
文摘Water quality sensor networks are widely used in water resource monitoring.However,due to the fact that the energy of these networks cannot be supplemented in time,it is necessary to study effective routing protocols to extend their lifecycle.To address the problem of limited resources,a routing optimization algorithm based on a small-world network model is proposed.In this paper,a small-world network model is introduced for water quality sensor networks,in which the short average path and large clustering coefficient of the model are used to construct a super link.A short average path can reduce the network’s energy consumption,and a large coefficient can improve its fault-tolerance ability.However,the energy consumption of the relay nodes near the heterogeneous node is too great,and as such the energy threshold and non-uniform clustering are constructed to improve the lifecycle of the network.Simulation results show that,compared with the low-energy adaptive clustering hierarchy routing algorithm and the best sink location clustering heterogeneous network routing algorithm,the proposed improved routing model can effectively enhance the energy-utilization.The lifecycle of the network can be extended and the data transmission amount can be greatly increased.
基金This research was funded by the National Natural Science Foundation of China(Grant No.61802010)National Social Science Fund of China(Grant No.19BGL184)+1 种基金Beijing Excellent Talent Training Support Project for Young Top-Notch Team(Grant No.2018000026833TD01)and Hundred-Thousand-Ten Thousand Talents Project of Beijing(Grant No.2020A28).
文摘Water quality sensor networks are promising tools for the exploration of oceans.Some key areas need to be monitored effectively.Water quality sensors are deployed randomly or uniformly,however,and understanding how to deploy sensor nodes reasonably and realize effective monitoring of key areas on the basis of monitoring the whole area is an urgent problem to be solved.Additionally,energy is limited in water quality sensor networks.When moving sensor nodes,we should extend the life cycle of the sensor networks as much as possible.In this study,sensor nodes in non-key monitored areas are moved to key areas.First,we used the concentric circle method to determine the mobile sensor nodes and the target locations.Then,we determined the relationship between the mobile sensor nodes and the target locations according to the energy matrix.Finally,we calculated the shortest moving path according to the Floyd algorithm,which realizes the redeployment of the key monitored area.The simulation results showed that,compared with the method of direct movement,the proposed method can effectively reduce the energy consumption and save the network adjustment time based on the effective coverage of key areas.
基金This research was funded by the National Natural Science Foundation of China,No.61802010Hundred-Thousand-Ten Thousand Talents Project of Beijing No.2020A28+1 种基金National Social Science Fund of China,No.19BGL184Beijing Excellent Talent Training Support Project for Young Top-Notch Team No.2018000026833TD01 and Academic Research Projects of Beijing Union University,No.ZK30202103。
文摘Underwater sensor networks have important application value in the fields of water environment data collection,marine environment monitoring and so on.It has some characteristics such as low available bandwidth,large propagation delays and limited energy,which bring new challenges to the current researches.The research on coverage control of underwater sensor networks is the basis of other related researches.A good sensor node coverage control method can effectively improve the quality of water environment monitoring.Aiming at the problem of high dynamics and uncertainty of monitoring targets,the random events level are divided into serious events and general events.The sensors are set to sense different levels of events and make different responses.Then,an event-driven optimization algorithm for determining sensor target location based on self-organization map is proposed.Aiming at the problem of limited energy of underwater sensor nodes,considering the moving distance,coverage redundancy and residual energy of sensor nodes,an underwater sensor movement control algorithm based on residual energy probability is proposed.The simulation results show that compared with the simple movement algorithm,the proposed algorithm can effectively improve the coverage and life cycle of the sensor networks,and realize real-time monitoring of the water environment.
基金This research was funded by the National Natural Science Foundation of China,No.61802010Hundred-Thousand-Ten Thousand Talents Project of Beijing No.2020A28+1 种基金National Social Science Fund of China,No.19BGL184Beijing Excellent Talent Training Support Project for Young Top-Notch Team No.2018000026833TD01.
文摘Wireless sensor networks(WSN)can be used in many fields.In wireless sensor networks,sensor nodes transmit data in multi hop mode.The large number of hops required by data transmission will lead to unbalanced energy consumption and large data transmission delay of the whole network,which greatly affects the invulnerability of the network.Therefore,an optimal deployment of heterogeneous nodes(ODHN)algorithm is proposed to enhance the invulnerability of the wireless sensor networks.The algorithm combines the advantages of DEEC(design of distributed energy efficient clustering)clustering algorithm and BAS(beetle antenna search)optimization algorithm to find the globally optimal deployment locations of heterogeneous nodes.Then,establish a shortcut to communicate with sink nodes through heterogeneous nodes.Besides,considering the practical deployment operation,we set the threshold of the mobile location of heterogeneous nodes,which greatly simplifies the deployment difficulty.Simulation results show that compared with traditional routing protocols,the proposed algorithm can make the network load more evenly,and effectively improve energy-utilization and the fault tolerance of the whole network,which can greatly improve the invulnerability of the wireless sensor networks.
基金This research was funded by the National Natural Science Foundation of China,No.61802010Hundred-Thousand-Ten Thousand Talents Project of Beijing No.2020A28+2 种基金National Social Science Fund of China,No.19BGL184Beijing Excellent Talent Training Support Project for Young Top-Notch Team No.2018000026833TD01Academic Research Projects of Beijing Union University,No.ZK30202103.
文摘Wireless Sensor Network(WSN)is an important part of the Internet of Things(IoT),which are used for information exchange and communication between smart objects.In practical applications,WSN lifecycle can be influenced by the unbalanced distribution of node centrality and excessive energy consumption,etc.In order to overcome these problems,a heterogeneous wireless sensor network model with small world characteristics is constructed to balance the centrality and enhance the invulnerability of the network.Also,a new WSN centrality measurement method and a new invulnerability measurement model are proposed based on the WSN data transmission characteristics.Simulation results show that the life cycle and data transmission volume of the network can be improved with a lower network construction cost,and the invulnerability of the network is effectively enhanced.
基金financially supported by the China Scholarship Council (CSC)(No. 201606080014)the University of Wollongong(UOW)the Electron Microscopy center of UOW (EMC)
文摘An equiatomic CoCrFeNiMn High Entropy Alloy(HEA)was in-situ deposited by the powder-bed arc ad-ditive manufacturing(PBAAM)process for the first time.Comparative research was conducted on the evolution of phase,crystallographic orientation,dislocation morphology,precipitation,and mechanical performance with the accumulation of inter-layer remelting times.The experimental outcomes mani-fested that the PBAAMed CoCrFeNiMn HEA consists of a stable solid-solution FCC structure,with de-creased lattice parameter but slightly increased(full width at half maximum)FWHM as the accumulation of the inter-layer remelting.The{001}<100>cube texture with a weakened texture intensity was de-tected with an increment of inter-layer remelting frequency from once to 5 times,yet it was transformed into{011}<100>Goss texture with a further increase to 7 times.Additionally,the mean grain diameter distinctly decreased,while the volume fraction of(low angle grain boundaries)LAGBs and dislocation density remarkably added up as the accumulated inter-layer remelts.Predominant cellular substructure generated in all process conditions and could be easily differentiated by elemental segregation.Both theσand M 23 C 6 Cr-rich precipitates in nano-scale and submicron MnS precipitate were detected on the grain boundaries of the PBAAMed deposited components,with a rather sparse distribution.Speaking of mechanical performance,the YS,UTS,and hardening rate are generally increased while the UE is grad-ually decreased as increased inter-layer remelting times.The studied PBAAMed CoCrFeNiMn HEA pos-sesses comparable mechanical performances with the counterparts of laser-deposited and as-cast ones.The strengthening mechanisms of the studied material are predominantly the grain boundary strength-ening and dislocation strengthening.This investigation would be a valuable resource in the research field of fabricating HEA alloys with acceptable microstructure and properties using the PBAAM method.