Lithium-sulfur(Li-S)batteries as power supply systems possessing a theoretical energy density of as high as 2600 Wh kg−1 are considered promising alternatives toward the currently used lithium-ion batteries(LIBs).Howe...Lithium-sulfur(Li-S)batteries as power supply systems possessing a theoretical energy density of as high as 2600 Wh kg−1 are considered promising alternatives toward the currently used lithium-ion batteries(LIBs).However,the insulation characteristic and huge volume change of sulfur,the generation of dissolvable lithium polysulfides(LiPSs)during charge/discharge,and the uncontrollable dendrite formation of Li metal anodes render Li-S batteries serious cycling issues with rapid capacity decay.To address these challenges,extensive efforts are devoted to designing cathode/anode hosts and/or modifying separators by incorporating functional materials with the features of improved conductivity,lithiophilic,physical/chemical capture ability toward LiPSs,and/or efficient catalytic conversion of LiPSs.Among all candidates,molybdenum-based(Mo-based)materials are highly preferred for their tunable crystal structure,adjustable composition,variable valence of Mo centers,and strong interactions with soluble LiPSs.Herein,the latest advances in design and application of Mo-based materials for Li-S batteries are comprehensively reviewed,covering molybdenum oxides,molybdenum dichalcogenides,molybdenum nitrides,molybdenum carbides,molybdenum phosphides,and molybdenum metal.In the end,the existing challenges in this research field are elaborately discussed.展开更多
基金supported by the National Natural Science Foundation of China(Nos.21975123 and 61704076)the Natural Science Basic Research Program of Shaanxi(No.2020JM-092)+2 种基金the Six Talent Peaks Project in Jiangsu Prov-ince(No.XCL-024)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Nos.KYCX20_0997 and SJCX20_0401)the Fundamental Research Funds for the Central Universities.
文摘Lithium-sulfur(Li-S)batteries as power supply systems possessing a theoretical energy density of as high as 2600 Wh kg−1 are considered promising alternatives toward the currently used lithium-ion batteries(LIBs).However,the insulation characteristic and huge volume change of sulfur,the generation of dissolvable lithium polysulfides(LiPSs)during charge/discharge,and the uncontrollable dendrite formation of Li metal anodes render Li-S batteries serious cycling issues with rapid capacity decay.To address these challenges,extensive efforts are devoted to designing cathode/anode hosts and/or modifying separators by incorporating functional materials with the features of improved conductivity,lithiophilic,physical/chemical capture ability toward LiPSs,and/or efficient catalytic conversion of LiPSs.Among all candidates,molybdenum-based(Mo-based)materials are highly preferred for their tunable crystal structure,adjustable composition,variable valence of Mo centers,and strong interactions with soluble LiPSs.Herein,the latest advances in design and application of Mo-based materials for Li-S batteries are comprehensively reviewed,covering molybdenum oxides,molybdenum dichalcogenides,molybdenum nitrides,molybdenum carbides,molybdenum phosphides,and molybdenum metal.In the end,the existing challenges in this research field are elaborately discussed.