期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Chemical dehydration coupling multi-effect evaporation to treat waste sulfuric acid in titanium dioxide production process 被引量:7
1
作者 Hongyin Pang ruifang lu +3 位作者 Tao Zhang Li Lü Yanxiao Chen Shengwei Tang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第4期1162-1170,共9页
In order to concentrate the diluted sulfuric acid from the titanium dioxide(TiO2)production of sulphate process,a new concentration process was proposed by coupling chemical dehydration and multi-effect evaporation.Th... In order to concentrate the diluted sulfuric acid from the titanium dioxide(TiO2)production of sulphate process,a new concentration process was proposed by coupling chemical dehydration and multi-effect evaporation.The ferrous sulfate monohydrate(FeSO4·H2O),as the dehydrant,was added to the diluted sulfuric acid to form ferrous sulfate heptahydrate(FeSO4·7H2O)according to the H2SO4-FeSO4-H2O phase diagrams,which partially removes the water.This process was named as Chemical Dehydration Process.The residual water was further removed by two-effect evaporation and finally 70 wt%sulfuric acid was obtained.The FeSO4·H2O can be regenerated through drying and dehydration of FeSO4·7H2O.The results show that FeSO4·H2O is the most suitable dehydrant,the optimal reaction time of chemical dehydration process is 30 min,and low temperature is favorable for the dehydration reaction.45.17%of the entire removed water can be removed by chemical dehydration from the diluted sulfuric acid.This chemical dehydration process is also energy efficient with 24.76%saving compared with the direct evaporation process.Furthermore,51.21%of the FeSO4 dissolved originally in the diluted sulfuric acid are precipitated out during the chemical dehydration,which greatly reduces the solid precipitation and effectively alleviates the scaling in the subsequent multi-effect evaporation process. 展开更多
关键词 Chemical dehydration Multi-effect evaporation Sulfuric acid TITANIUM
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部