The effect of a proteolytic starter culture isolated from Nanx Wudl,on microbiological,biochemical and organoleptic attributes of dry fermented sausages was investigated during processing.Based on preliminary screenin...The effect of a proteolytic starter culture isolated from Nanx Wudl,on microbiological,biochemical and organoleptic attributes of dry fermented sausages was investigated during processing.Based on preliminary screening,the combination of Staphylococcus xylosus SX16 and Lactobacillus plantarum CMRC6,showing excellent proteolytic activity in vitro,was selected as the multi-strain starter(starter LS).For comparison,the single-strain starter culture of L.plantarum CMRC6(starter LB)and non-inoculated control were also tested.During fermentation,lactic acid bacteria and staphylococci dominated the microbiota and suppressed the Enterobacteriaceae growth in LS-inoculated sausages.The addition of LS starter accelerated acidification and proteolysis during ripening,improving the contents of total free amino acids and several essential free amino acids(Phe,Ile and Leu).Volatile compounds analysis revealed that LS-fermented sausage showed the highest abundance of 3-methyl-1-butanol,probably due to the inoculated S.xylosus.The inoculation of LS starter improved the sensory properties of sausages,especially the flavor attribute.Therefore,S.xylosus SX16 and L.plantarum CMRC6 are promising candidates for inclusion as multi-strain starters in the manufacture of gourmet fermented dry sausage.展开更多
Yeasts are one of the predominant microbial groups in fermented meats.In this study,yeast communities of Chinese Dong fermented pork(Nanx Wudl)were investigated and the technological properties of 73 yeast isolates we...Yeasts are one of the predominant microbial groups in fermented meats.In this study,yeast communities of Chinese Dong fermented pork(Nanx Wudl)were investigated and the technological properties of 73 yeast isolates were evaluated.Through culture-dependent and high-throughput sequencing methods,the main yeast species identified included Pichia membranifaciens,Kazachstania bulderi,Millerozyma farinosa,Candida zeylanoides,Kazachstania exigua,Candida parapsilosis and Saccharomyces cerevisiae.Among these yeasts,P.membranifaciens,M.farinosa,K.exigua and K.bulderi were detected in fermented meats for the first time.A total of 73 yeast isolates was investigated for their lipolytic and proteolytic activities.All yeast species showed lipolytic activity,while proteolytic activity against meat protein was only detected in S.cerevisiae.Assay of aroma-producing potential was performed in a model simulating fermented sausage condition.Inoculation of yeast strains increased volatiles production,especially esters and alcohols.The highest ester production was observed in S.cerevisiae Y70 strain,followed by K.exigua Y12 and K.bulderi Y19.C.zeylanoides Y10 and S.cerevisiae Y70 were the highest producers of benzeneethanol and 3-methyl-1-butanol.S.cerevisiae Y70 with its highest production of branched alcohols and esters could be a promising candidate as aroma enhancer in the manufacture of fermented sausages.展开更多
[ Objective] This study aimed to investigate the effects of 5-aminolevulinic acid (ALA) on the content of total flavonoids and relative expression levels of chalcoue sythase (CHS) and chalcone isomerase (CHI) ge...[ Objective] This study aimed to investigate the effects of 5-aminolevulinic acid (ALA) on the content of total flavonoids and relative expression levels of chalcoue sythase (CHS) and chalcone isomerase (CHI) genes in young apples to determine the appropriate ALA concentration and processing time. [Method] Before thinning, young apples were treated with 0 ( CK), 100,200,300 and 400 mg/L ALA. At 12 d after ALA treatment, the content of total flavonoids in young apples was determined by ultraviolet spectrophotometry. The relative expression levels of CHS and CHI genes in young apples were determined by qPCR. [ Result ] When ALA concentration was 0 - 300 mg/L, the content of total flavonoids and relative expression levels of CHS and CHI genes in young apples were improved with the increase of ALA concentration. As ALA concentration rose to 400 rag/L, various indicators showed a downward trend. Moreover, the content of total flavouoids and relative expression levels of CHS and CHI genes in young apples treated with different concentrations of ALA were improved significantly, which reached the maximum at 9 d and declined since 12 d. [ Conclusion] Compared with CK, spraying young apples with 300 mg/L ALA at 6 -9 d before thinning was conducive to improving the content of flavanoids in thinned young apples.展开更多
Yeasts play a critical role in the flavor formation of dry-cured ham.In this study,41 yeast isolates from the dry-cured ham at different processing stages were evaluated for their technological properties.Debaryomyces...Yeasts play a critical role in the flavor formation of dry-cured ham.In this study,41 yeast isolates from the dry-cured ham at different processing stages were evaluated for their technological properties.Debaryomyces hansenii was the most dominant yeast and has been detected at each phase of dry-cured ham,followed by Candida zeylanoides which was mainly detected in salting phase.Yarrowia bubula and Yarrowia alimentaria were found at the first two-phase of dry-cured ham.All isolates of yeast showed enzymatic activities against milk protein and tributyrin,while only 4 strains displayed proteolytic activity on meat protein.Yeast strains were grown in a meat model medium and volatile compounds were identified.The result showed that inoculated yeast strains could promote the production of volatiles and there were significant differences among strains.D.hansenii S25 showed the highest production of volatile compounds,followed by the strain C.zeylanoides C4.D.hansenii S25 was the highest producer of alcohols showing the highest production of benzeneethanol and 3-(methylthio)-1-propanol.Based on OAV and PLS analysis,D.hansenii S25 was strongly correlated with overall flavor and key volatile compounds of dry-cured ham,which could be selected as potential starter cultures.展开更多
Tuberous sclerosis complex (TSC) is an autosomal dominant tumor syndrome which afflicts multiple organs and for which there is no cure, such that TSC patients may develop severe mental retardation and succumb to ren...Tuberous sclerosis complex (TSC) is an autosomal dominant tumor syndrome which afflicts multiple organs and for which there is no cure, such that TSC patients may develop severe mental retardation and succumb to renal or respiratory failure. TSC derives from inacti- vating mutations of either the TSC1 or TSC2 tumor suppressor gene, and the resulting inactivation of the TSC1/TSC2 protein complex causes hyperactivation of the mammalian target of rapamyein (mTOR), leading to uncontrolled cell growth and proliferation. Recent clinical trials of targeted suppression of mTOR have yielded only modest success in TSC patients. It was proposed that abrogation of a newly identified mTOR-mediated negative feedback regulation on extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling pathway and on the well-documented RTK-PI3K-AKT signaling cascade could limit the efficacy of mTOR inhibitors in the treatment of TSC patients. Therefore, we speculate that dual inhibition of mTOR and ERK/MAPK pathways may overcome the disadvantage of single agent therapies and boost the efficacy of mTOR targeted therapies for TSC patients. Investigation of this hypothesis in a TSC cell model revealed that mTOR suppression with an mTOR inhibitor, rapamycin (sirolimus), led to up-regulation of ERK/MAPK signaling in mouse Tsc2 knockout cells and that this augmented signaling was attenuated by concurrent administration of a MEK1/2 inhibitor, PD98059. When compared with monotherapy, combinatorial application of rapamycin and PD98059 had greater inhibitory effects on Tsc2 deficient cell proliferation, suggesting that combined suppression of mTOR and ERK/MAPK signaling pathways may have advantages over single mTOR inhibition in the treatment of TSC patients.展开更多
Like the type I interferons(IFNs),the recently discovered cytokine IFN-λ displays antiviral,antiproliferative,and proapoptotic activities,mediated by a heterodimeric IFN-λ receptor complex composed of a unique IFN-...Like the type I interferons(IFNs),the recently discovered cytokine IFN-λ displays antiviral,antiproliferative,and proapoptotic activities,mediated by a heterodimeric IFN-λ receptor complex composed of a unique IFN-λR1 chain and the IL-10R2 chain.However,the molecular mechanism of the IFN-λ-regulated pathway remains unclear.In this study,we newly identified RAN-binding protein M(RanBPM) as a binding partner of IFN-λR1.The interaction between RanBPM and IFN-λRl was identified with a glutathione S-transferase pull-down assay and coimmunoprecipitation experiments.IFN-λ1 stimulates this interaction and affects the cellular distribution of RanBPM.However,the interaction between RanBPM and IFN-λR1 does not correlate with their conserved TRAF6-binding sites.Furthermore,we also found that RanBPM is a scaffolding protein with a modulatory function that regulates the activities of IFN-stimulated response elements.Therefore,RanBPM plays a novel role in the IFN-λ-regulated signaling pathway.展开更多
基金the National Key R&D Program of China(grant no.2018YFD0400404).
文摘The effect of a proteolytic starter culture isolated from Nanx Wudl,on microbiological,biochemical and organoleptic attributes of dry fermented sausages was investigated during processing.Based on preliminary screening,the combination of Staphylococcus xylosus SX16 and Lactobacillus plantarum CMRC6,showing excellent proteolytic activity in vitro,was selected as the multi-strain starter(starter LS).For comparison,the single-strain starter culture of L.plantarum CMRC6(starter LB)and non-inoculated control were also tested.During fermentation,lactic acid bacteria and staphylococci dominated the microbiota and suppressed the Enterobacteriaceae growth in LS-inoculated sausages.The addition of LS starter accelerated acidification and proteolysis during ripening,improving the contents of total free amino acids and several essential free amino acids(Phe,Ile and Leu).Volatile compounds analysis revealed that LS-fermented sausage showed the highest abundance of 3-methyl-1-butanol,probably due to the inoculated S.xylosus.The inoculation of LS starter improved the sensory properties of sausages,especially the flavor attribute.Therefore,S.xylosus SX16 and L.plantarum CMRC6 are promising candidates for inclusion as multi-strain starters in the manufacture of gourmet fermented dry sausage.
基金the National Key R&D Program of China(grant no.2018YFD0400404).
文摘Yeasts are one of the predominant microbial groups in fermented meats.In this study,yeast communities of Chinese Dong fermented pork(Nanx Wudl)were investigated and the technological properties of 73 yeast isolates were evaluated.Through culture-dependent and high-throughput sequencing methods,the main yeast species identified included Pichia membranifaciens,Kazachstania bulderi,Millerozyma farinosa,Candida zeylanoides,Kazachstania exigua,Candida parapsilosis and Saccharomyces cerevisiae.Among these yeasts,P.membranifaciens,M.farinosa,K.exigua and K.bulderi were detected in fermented meats for the first time.A total of 73 yeast isolates was investigated for their lipolytic and proteolytic activities.All yeast species showed lipolytic activity,while proteolytic activity against meat protein was only detected in S.cerevisiae.Assay of aroma-producing potential was performed in a model simulating fermented sausage condition.Inoculation of yeast strains increased volatiles production,especially esters and alcohols.The highest ester production was observed in S.cerevisiae Y70 strain,followed by K.exigua Y12 and K.bulderi Y19.C.zeylanoides Y10 and S.cerevisiae Y70 were the highest producers of benzeneethanol and 3-methyl-1-butanol.S.cerevisiae Y70 with its highest production of branched alcohols and esters could be a promising candidate as aroma enhancer in the manufacture of fermented sausages.
基金Supported by Earmarked Fund for Modern Agro-industry Technology Research System of China(GK661001)
文摘[ Objective] This study aimed to investigate the effects of 5-aminolevulinic acid (ALA) on the content of total flavonoids and relative expression levels of chalcoue sythase (CHS) and chalcone isomerase (CHI) genes in young apples to determine the appropriate ALA concentration and processing time. [Method] Before thinning, young apples were treated with 0 ( CK), 100,200,300 and 400 mg/L ALA. At 12 d after ALA treatment, the content of total flavonoids in young apples was determined by ultraviolet spectrophotometry. The relative expression levels of CHS and CHI genes in young apples were determined by qPCR. [ Result ] When ALA concentration was 0 - 300 mg/L, the content of total flavonoids and relative expression levels of CHS and CHI genes in young apples were improved with the increase of ALA concentration. As ALA concentration rose to 400 rag/L, various indicators showed a downward trend. Moreover, the content of total flavouoids and relative expression levels of CHS and CHI genes in young apples treated with different concentrations of ALA were improved significantly, which reached the maximum at 9 d and declined since 12 d. [ Conclusion] Compared with CK, spraying young apples with 300 mg/L ALA at 6 -9 d before thinning was conducive to improving the content of flavanoids in thinned young apples.
基金the financial support of Guizhou Province Science and Technology Plan Project(QKHZC[2020]1Y152)the Guizhou High-level Innovative Talent Training Project(Qianke Cooperation Platform Talent number[2016]5662)Guizhou Science and Technology Innovation Talent Team of Ecological Characteristic Meat Products(QKHPTRC[2020]5004).
文摘Yeasts play a critical role in the flavor formation of dry-cured ham.In this study,41 yeast isolates from the dry-cured ham at different processing stages were evaluated for their technological properties.Debaryomyces hansenii was the most dominant yeast and has been detected at each phase of dry-cured ham,followed by Candida zeylanoides which was mainly detected in salting phase.Yarrowia bubula and Yarrowia alimentaria were found at the first two-phase of dry-cured ham.All isolates of yeast showed enzymatic activities against milk protein and tributyrin,while only 4 strains displayed proteolytic activity on meat protein.Yeast strains were grown in a meat model medium and volatile compounds were identified.The result showed that inoculated yeast strains could promote the production of volatiles and there were significant differences among strains.D.hansenii S25 showed the highest production of volatile compounds,followed by the strain C.zeylanoides C4.D.hansenii S25 was the highest producer of alcohols showing the highest production of benzeneethanol and 3-(methylthio)-1-propanol.Based on OAV and PLS analysis,D.hansenii S25 was strongly correlated with overall flavor and key volatile compounds of dry-cured ham,which could be selected as potential starter cultures.
基金supported in part by the National Natural Science Foundation of China (No. 30788004)
文摘Tuberous sclerosis complex (TSC) is an autosomal dominant tumor syndrome which afflicts multiple organs and for which there is no cure, such that TSC patients may develop severe mental retardation and succumb to renal or respiratory failure. TSC derives from inacti- vating mutations of either the TSC1 or TSC2 tumor suppressor gene, and the resulting inactivation of the TSC1/TSC2 protein complex causes hyperactivation of the mammalian target of rapamyein (mTOR), leading to uncontrolled cell growth and proliferation. Recent clinical trials of targeted suppression of mTOR have yielded only modest success in TSC patients. It was proposed that abrogation of a newly identified mTOR-mediated negative feedback regulation on extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling pathway and on the well-documented RTK-PI3K-AKT signaling cascade could limit the efficacy of mTOR inhibitors in the treatment of TSC patients. Therefore, we speculate that dual inhibition of mTOR and ERK/MAPK pathways may overcome the disadvantage of single agent therapies and boost the efficacy of mTOR targeted therapies for TSC patients. Investigation of this hypothesis in a TSC cell model revealed that mTOR suppression with an mTOR inhibitor, rapamycin (sirolimus), led to up-regulation of ERK/MAPK signaling in mouse Tsc2 knockout cells and that this augmented signaling was attenuated by concurrent administration of a MEK1/2 inhibitor, PD98059. When compared with monotherapy, combinatorial application of rapamycin and PD98059 had greater inhibitory effects on Tsc2 deficient cell proliferation, suggesting that combined suppression of mTOR and ERK/MAPK signaling pathways may have advantages over single mTOR inhibition in the treatment of TSC patients.
基金supported by the National Natural Science Foundation of China(81302186,81372354,81672478)the Beijing Natural Science Foundation(7151002)+1 种基金the Beijing Laboratory of Biomedical Materials Foundation,the Beijing Neurosurgical Institute Youth Programme(2014003,2016003)the Beijing Municipal Administration of Hospitals' Youth Programme(QML20150505)
文摘Like the type I interferons(IFNs),the recently discovered cytokine IFN-λ displays antiviral,antiproliferative,and proapoptotic activities,mediated by a heterodimeric IFN-λ receptor complex composed of a unique IFN-λR1 chain and the IL-10R2 chain.However,the molecular mechanism of the IFN-λ-regulated pathway remains unclear.In this study,we newly identified RAN-binding protein M(RanBPM) as a binding partner of IFN-λR1.The interaction between RanBPM and IFN-λRl was identified with a glutathione S-transferase pull-down assay and coimmunoprecipitation experiments.IFN-λ1 stimulates this interaction and affects the cellular distribution of RanBPM.However,the interaction between RanBPM and IFN-λR1 does not correlate with their conserved TRAF6-binding sites.Furthermore,we also found that RanBPM is a scaffolding protein with a modulatory function that regulates the activities of IFN-stimulated response elements.Therefore,RanBPM plays a novel role in the IFN-λ-regulated signaling pathway.