Dear editor,In this letter,we would like to discuss a method to avoid collisions and deadlocks in multi-robot systems based on a new concept of glued nodes.In terms of collision and deadlock avoidance,many methods are...Dear editor,In this letter,we would like to discuss a method to avoid collisions and deadlocks in multi-robot systems based on a new concept of glued nodes.In terms of collision and deadlock avoidance,many methods are based on zone control which has two disadvantages.First,unless all nodes are collision-free,the roadmap must be divided into disjoint zones,which increases the difficulty of applying the methods.Moreover,each zone should be able to accommodate a robot,which leads to imprecision and waste of space.This letter proposes the concept of glued nodes,which can dynamically determine the mutual influence between nodes based on the real-time sizes and paths of the robots.Based on the glued nodes,this letter proposes a collision and deadlock avoidance algorithm,which can be applied to multi-robot systems with variable-sized robots and roadmaps with any structure.The experimental results indicate that the method proposed in this letter is effective and efficient.展开更多
Multi-mobile robot systems(MMRSs)are widely used for transportation in industrial scenes such as manufacturing and warehousing.In an MMRS,motion coordination is important as collisions and deadlocks may lead to losses...Multi-mobile robot systems(MMRSs)are widely used for transportation in industrial scenes such as manufacturing and warehousing.In an MMRS,motion coordination is important as collisions and deadlocks may lead to losses or system stagnation.However,in some scenarios,robot sizes are different when loaded and unloaded,which means that the robots are variable-sized,making motion coordination more difficult.The methods based on zone control need to first divide the environment into disjoint zones,and then allocate the zones statically or dynamically for motion coordination.The zone-control-based methods are not accurate enough for variable-sized multi-mobile robots and reduce the efficiency of the system.This paper describes a motion coordination method based on glued nodes,which can dynamically avoid collisions and deadlocks according to the roadmap structure and the real-time paths of robots.Dynamic features make this method directly applicable to various scenarios,instead of dividing a roadmap into disjoint zones.The proposed method has been applied to many industrial projects,and this study is based on some manufacturing projects for experiments.Theoretical analysis and experimental results show that the proposed algorithm is effective and efficient.展开更多
文摘Dear editor,In this letter,we would like to discuss a method to avoid collisions and deadlocks in multi-robot systems based on a new concept of glued nodes.In terms of collision and deadlock avoidance,many methods are based on zone control which has two disadvantages.First,unless all nodes are collision-free,the roadmap must be divided into disjoint zones,which increases the difficulty of applying the methods.Moreover,each zone should be able to accommodate a robot,which leads to imprecision and waste of space.This letter proposes the concept of glued nodes,which can dynamically determine the mutual influence between nodes based on the real-time sizes and paths of the robots.Based on the glued nodes,this letter proposes a collision and deadlock avoidance algorithm,which can be applied to multi-robot systems with variable-sized robots and roadmaps with any structure.The experimental results indicate that the method proposed in this letter is effective and efficient.
基金Project supported by the Key Research and Development Program of Zhejiang Province,China(No.2023C01174)。
文摘Multi-mobile robot systems(MMRSs)are widely used for transportation in industrial scenes such as manufacturing and warehousing.In an MMRS,motion coordination is important as collisions and deadlocks may lead to losses or system stagnation.However,in some scenarios,robot sizes are different when loaded and unloaded,which means that the robots are variable-sized,making motion coordination more difficult.The methods based on zone control need to first divide the environment into disjoint zones,and then allocate the zones statically or dynamically for motion coordination.The zone-control-based methods are not accurate enough for variable-sized multi-mobile robots and reduce the efficiency of the system.This paper describes a motion coordination method based on glued nodes,which can dynamically avoid collisions and deadlocks according to the roadmap structure and the real-time paths of robots.Dynamic features make this method directly applicable to various scenarios,instead of dividing a roadmap into disjoint zones.The proposed method has been applied to many industrial projects,and this study is based on some manufacturing projects for experiments.Theoretical analysis and experimental results show that the proposed algorithm is effective and efficient.