An investigation of equatorial near-inertial wave dynamics under complete Coriolis parameters is performed in this paper.Starting from the basic model equations of oceanic motions,a Korteweg de Vries equation is deriv...An investigation of equatorial near-inertial wave dynamics under complete Coriolis parameters is performed in this paper.Starting from the basic model equations of oceanic motions,a Korteweg de Vries equation is derived to simulate the evolution of equatorial nonlinear near-inertial waves by using methods of scaling analysis and perturbation expansions under the equatorial beta plane approximation.Theoretical dynamic analysis is finished based on the obtained Korteweg de Vries equation,and the results show that the horizontal component of Coriolis parameters is of great importance to the propagation of equatorial nonlinear near-inertial solitary waves by modifying its dispersion relation and by interacting with the basic background flow.展开更多
The investigation on the fluctuations of nonlinear Rossby waves is of great importance for the understanding of atmospheric or oceanic motions.The present paper mainly deals with the well-known atmospheric blocking ph...The investigation on the fluctuations of nonlinear Rossby waves is of great importance for the understanding of atmospheric or oceanic motions.The present paper mainly deals with the well-known atmospheric blocking phenomena through the nonlinear Rossby wave theories and the corresponding methods.Based on the equivalent barotropic potential vorticity model in theβ-plane approximation underlying a weak time-dependent mean flow,the multiscale technique and perturbation approximated methods are adopted to derive a new forced Korteweg-de Vries model equation with varied coefficients(vfKdV)for the Rossby wave amplitude.For a further analytical treatment of the obtained model problem,a special kind of basic flow is adopted.The evolution processes of atmospheric blocking are well discussed according to the given parameters according to the dipole blocking theory.The effects of some physical factors,especially the mean flow,on the propagation of atmospheric blocking are analyzed.展开更多
基金The National Natural Science Foundation of China under contract No.11762011the Natural Science Foundation of Inner Mongolia Autonomous Region under contract No.2020BS01002+1 种基金the Research Program of Science at Universities of Inner Mongolia Autonomous Region under contract No.NJZY20003the Scientific Starting Foundation of Inner Mongolia University under contract No.21100-5185105
文摘An investigation of equatorial near-inertial wave dynamics under complete Coriolis parameters is performed in this paper.Starting from the basic model equations of oceanic motions,a Korteweg de Vries equation is derived to simulate the evolution of equatorial nonlinear near-inertial waves by using methods of scaling analysis and perturbation expansions under the equatorial beta plane approximation.Theoretical dynamic analysis is finished based on the obtained Korteweg de Vries equation,and the results show that the horizontal component of Coriolis parameters is of great importance to the propagation of equatorial nonlinear near-inertial solitary waves by modifying its dispersion relation and by interacting with the basic background flow.
基金supported by the National Natural Science Foundation of China(Nos.12102205 and 11762011)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(No.2020BS01002)+2 种基金the Research Program of Science at Universities of Inner Mongolia Autonomous Region of China(No.NJZY20003)the Scientific Starting Foundation of Inner Mongolia University of China(No.21100-5185105)the Innovative Research Team in Universities of Inner Mongolia Autonomous Region of China(No.NMGIRT2008)。
文摘The investigation on the fluctuations of nonlinear Rossby waves is of great importance for the understanding of atmospheric or oceanic motions.The present paper mainly deals with the well-known atmospheric blocking phenomena through the nonlinear Rossby wave theories and the corresponding methods.Based on the equivalent barotropic potential vorticity model in theβ-plane approximation underlying a weak time-dependent mean flow,the multiscale technique and perturbation approximated methods are adopted to derive a new forced Korteweg-de Vries model equation with varied coefficients(vfKdV)for the Rossby wave amplitude.For a further analytical treatment of the obtained model problem,a special kind of basic flow is adopted.The evolution processes of atmospheric blocking are well discussed according to the given parameters according to the dipole blocking theory.The effects of some physical factors,especially the mean flow,on the propagation of atmospheric blocking are analyzed.