In this paper,a nonlinear time-fractional coupled diffusion system is solved by using a mixed finite element(MFE)method in space combined with L1-approximation and implicit second-order backward difference scheme in t...In this paper,a nonlinear time-fractional coupled diffusion system is solved by using a mixed finite element(MFE)method in space combined with L1-approximation and implicit second-order backward difference scheme in time.The stability for nonlinear fully discrete finite element scheme is analyzed and a priori error estimates are derived.Finally,some numerical tests are shown to verify our theoretical analysis.展开更多
基金the National Natural Science Fund(11661058,11301258,11361035)the Natural Science Fund of Inner Mongolia Autonomous Region(2016MS0102,2015MS0101)+1 种基金the Scientific Research Projection of Higher Schools of Inner Mongolia(NJZZ12011)the National Undergraduate Innovative Training Project(201510126026).
文摘In this paper,a nonlinear time-fractional coupled diffusion system is solved by using a mixed finite element(MFE)method in space combined with L1-approximation and implicit second-order backward difference scheme in time.The stability for nonlinear fully discrete finite element scheme is analyzed and a priori error estimates are derived.Finally,some numerical tests are shown to verify our theoretical analysis.