Finding a real thermoelectric(TE)material that excels in various aspects of TE performance,mechanical properties,TE power generation,and cooling is challenging for its commercialization.Herein,we report a novel multif...Finding a real thermoelectric(TE)material that excels in various aspects of TE performance,mechanical properties,TE power generation,and cooling is challenging for its commercialization.Herein,we report a novel multifunctional Ge0.78Cd0.06Pb0.1Sb0.06Te material with excellent TE performance and mechanical strength,which is utilized to construct candidate TE power generation and cooling devices near room temperature.Specifically,the effectiveness of band convergence,combined with optimized carrier concentration and electronic quality factor,distinctly boosts the Seebeck coefficient,thus greatly improving the power factor.Advanced electron microscopy observation indicates that complex multi-scale hierarchical structures and strain field distributions lead to ultra-low lattice thermal conductivity,and also effectively enhance mechanical properties.High ZT0.6 at 303 K,average ZTave1.18 from 303 to 553 K,and Vickers hardness of200 Hv in Ge0.78Cd0.06Pb0.1Sb0.06Te are obtained synchronously.Particularly,a 7-pair TE cooling device with a maximumΔT of45.9 K at Th=328 K,and a conversion efficiency of5.2%at Th=553 K is achieved in a single-leg device.The present findings demonstrate a unique approach to developing superior multifunctional GeTe-based alloys,opening up a promising avenue for commercial applications.展开更多
基金support from the National Key Research and Development Program of China(Grant Nos.2018YFA0702100 and 2022YFB3803900)the National Natural Science Foundation of China(Grant No.11874394)+2 种基金the Sichuan University Innovation Research Program of China(Grant No.2020SCUNL112)the University Synergy Innovation Program of Anhui Province(No.GXXT-2020-003)Ruihuan Cheng,Chengliang Xia,and Yue Chen are grateful for the research computing facilities offered by ITS,HKU.
文摘Finding a real thermoelectric(TE)material that excels in various aspects of TE performance,mechanical properties,TE power generation,and cooling is challenging for its commercialization.Herein,we report a novel multifunctional Ge0.78Cd0.06Pb0.1Sb0.06Te material with excellent TE performance and mechanical strength,which is utilized to construct candidate TE power generation and cooling devices near room temperature.Specifically,the effectiveness of band convergence,combined with optimized carrier concentration and electronic quality factor,distinctly boosts the Seebeck coefficient,thus greatly improving the power factor.Advanced electron microscopy observation indicates that complex multi-scale hierarchical structures and strain field distributions lead to ultra-low lattice thermal conductivity,and also effectively enhance mechanical properties.High ZT0.6 at 303 K,average ZTave1.18 from 303 to 553 K,and Vickers hardness of200 Hv in Ge0.78Cd0.06Pb0.1Sb0.06Te are obtained synchronously.Particularly,a 7-pair TE cooling device with a maximumΔT of45.9 K at Th=328 K,and a conversion efficiency of5.2%at Th=553 K is achieved in a single-leg device.The present findings demonstrate a unique approach to developing superior multifunctional GeTe-based alloys,opening up a promising avenue for commercial applications.