期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Role of NO in Hg^0 oxidation over a commercial selective catalytic reduction catalyst V_2O_5–WO_3/TiO_2 被引量:4
1
作者 ruihui liu Wenqing Xu +1 位作者 Li Tong Tingyu Zhu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第12期126-132,共7页
Experiments were conducted in a fixed-bed reactor that contained a commercial catalyst,V2O5-WO3/TiO2,to investigate mercury oxidation in the presence of NO and O2.Mercury oxidation was improved by NO,and the efficienc... Experiments were conducted in a fixed-bed reactor that contained a commercial catalyst,V2O5-WO3/TiO2,to investigate mercury oxidation in the presence of NO and O2.Mercury oxidation was improved by NO,and the efficiency was increased by simultaneously adding NO and O2.With NO and O2 pretreatment at 350°C,the catalyst exhibited higher catalytic activity for Hg^0 oxidation,whereas NO pretreatment did not exert a noticeable effect.Decreasing the reaction temperature boosted the performance of the catalyst treated with NO and O2.Although NO promoted Hg^0 oxidation at the very beginning,excessive NO counteracted this effect.The results show that NO plays different roles in Hg^0oxidation; NO in the gaseous phase may directly react with the adsorbed Hg^0,but excessive NO hinders Hg^0 adsorption.The adsorbed NO was converted into active nitrogen species(e.g.,NO2) with oxygen,which facilitated the adsorption and oxidation of Hg^0.Hg^0 was oxidized by NO mainly by the Eley-Rideal mechanism.The Hg^0 temperature-programmed desorption experiment showed that weakly adsorbed mercury species were converted to strongly bound ones in the presence of NO and O2. 展开更多
关键词 MERCURY NO Mechanism Selective catalytic reduction catalyst Oxidation Vanadium
原文传递
Mechanism of Hg^0 oxidation in the presence of HCl over a commercial V_2O_5–WO_3/TiO_2 SCR catalyst 被引量:7
2
作者 ruihui liu Wenqing Xu +1 位作者 Li Tong Tingyu Zhu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第10期76-83,共8页
Experiments were conducted in a fixed-bed reactor containing a commercial V2O5/WO3/TiO2 catalyst to investigate mercury oxidation in the presence of HCl and O2. Mercury oxidation was improved significantly in the pres... Experiments were conducted in a fixed-bed reactor containing a commercial V2O5/WO3/TiO2 catalyst to investigate mercury oxidation in the presence of HCl and O2. Mercury oxidation was improved significantly in the presence of HCl and O2, and the Hg^0 oxidation efficiencies decreased slowly as the temperature increased from 200 to 400℃. Upon pretreatment with HCl and O2 at 350℃, the catalyst demonstrated higher catalytic activity for Hg^0 oxidation. Notably,the effect of pretreatment with HCl alone was not obvious. For the catalyst treated with HCl and O2, better performance was observed with lower reaction temperatures. The results showed that both HCl and Hg^0 were first adsorbed onto the catalyst and then reacted with O2 following its adsorption, which indicates that the oxidation of Hg^0 over the commercial catalyst followed the Langmuir–Hinshelwood mechanism. Several characterization techniques, including Hg^0temperature-programmed desorption(Hg-TPD) and X-ray photoelectron spectroscopy(XPS), were employed in this work. Hg-TPD profiles showed that weakly adsorbed mercury species were converted to strongly bound species in the presence of HCl and O2. XPS patterns indicated that new chemisorbed oxygen species were formed by the adsorption of HCl, which consequently facilitated the oxidation of mercury. 展开更多
关键词 Mercury Hydrogen chloride Vanadium-based catalyst Oxidation Mechanism
原文传递
Role of NO and SO_(2)in mercury oxidation over a La_(2)O_(3)/Fe_(2)O_(3)catalyst with high thermal stability 被引量:1
3
作者 ruihui liu Yang Yang +1 位作者 Tingyu Zhu Wenqing Xu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2021年第11期36-44,共9页
In this study,the thermal stability of a ferric oxide catalyst for mercury oxidation was found to be considerably promoted by doping with La_(2)O_(3).The catalysts doped with La_(2)O_(3)maintained a higher surface are... In this study,the thermal stability of a ferric oxide catalyst for mercury oxidation was found to be considerably promoted by doping with La_(2)O_(3).The catalysts doped with La_(2)O_(3)maintained a higher surface area when subjected to high-temperature calcination,with lower average pore size and a narrower pore size distribution.X-ray diffraction(XRD)results revealed that La_(2)O_(3)doping hinders the growth of catalyst particles and crystallization of the material at high temperatures.Both NO and SO_(2)inhibited Hg^(0)oxidation over the La_(2)O_(3)/Fe_(2)O_(3)catalyst.Fourier transform infrared(FTIR)spectra revealed that SO_(2)reacts with O_(2)over the catalysts to form several species that are inert for mercury oxidation,such as S042^(-),HS04^(-),or other related species;these inert species cover the catalyst surface and consequently decrease Hg^(0)oxidation capacity.In addition,NO or SO_(2)competed with Hg^(0)for active sites on the La_(2)O_(3)/Fe_(2)O_(3)catalyst and hindered the adsorption of mercury,thereby inhibiting subsequent Hg^(0)oxidation.Hg^(0)oxidation on the La_(2)O_(3)/Fe_(2)O_(3)catalyst mainly followed the Eley-Rideal mechanism.Moreover,the inhibition effects of NO and SO_(2)were at least partially reversible,and the catalytic activity was temporarily restored after eliminating NO or S0_(2). 展开更多
关键词 MERCURY Flue gas Fe_(2)O_(3) La_(2)O_(3) Thermal stability
原文传递
Effect of Al2O3 doping on the structure and performance of an Al2O3/Fe2O3 catalyst for mercury oxidation 被引量:1
4
作者 ruihui liu Tingyu Zhu +1 位作者 Li Tong Wenqing Xu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第4期138-145,共8页
In this study,the thermal stability of a Fe2 O3 catalyst for mercury oxidation was significantly improved by doping with Al2 O3.After 1 hr,the catalyst doped with 10 wt.%Al2 O3 still exhibited a mercury conversion eff... In this study,the thermal stability of a Fe2 O3 catalyst for mercury oxidation was significantly improved by doping with Al2 O3.After 1 hr,the catalyst doped with 10 wt.%Al2 O3 still exhibited a mercury conversion efficiency of 70.9%,while the undoped sample even lost its catalytic activity.Doping with Al2 O3 retarded the collapse of the catalyst mesoporous structure during high-temperature calcination,and the doped samples maintained a higher specific surface area,smaller pore size,and narrower pore size distribution.Transmission electron microscope images revealed that after calcination at 350℃,the average size of the catalyst grains in Fe2 O3 was 23.4 nm;however,the corresponding values for 1%Al2 O3/Fe2 O3,3%Al2 O3/Fe2 O3,and 10%Al2 O3/Fe2 O3 were only 13.3,7.1,and 4.7 nm,respectively.Results obtained from X-ray diffraction and thermogravimetry coupled with differential scanning calorimetry confirmed that doping with Al2 O3 also retards the crystallization of the catalysts at high temperature,constraining catalyst grains to a smaller size. 展开更多
关键词 MERCURY Catalytic oxidation FE2O3 AL2O3 Thermal stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部