Graphene-polyaniline(GP)composites are promising electrode materials for supercapacitors but possessing unsatisfied stability,especially under high mass loading,due to the low ion transmission efficiency and serious p...Graphene-polyaniline(GP)composites are promising electrode materials for supercapacitors but possessing unsatisfied stability,especially under high mass loading,due to the low ion transmission efficiency and serious pulverization effect.To address this issue,we propose a scalable method to achieve highly wettable GP electrodes,showing excellent stability.In addition,our results demonstrate that the performance of electrodes is nearly independent of the mass loading,indicating the great potential of such GP electrodes for practical devices.We attribute the remarkable performance of GP to the delicate precursor of nitrogen doped graphene film assembled by wet-spinning technology.This report provides a strategy to promote the ion penetrating efficiency across the electrodes and deter the pulverization effect,aiming at the practical GP supercapacitor electrodes of high mass loading.展开更多
基金This work is supported by the National Natural Science Foundation of China(51533008,21325417,51603183,51703194,51803177 and 21805242)the National Key R&D Program of China(2016YFA0200200)+3 种基金Fujian Provincial Science and Technology Major Projects(2018HZ0001-2)Hundred Talents Program of Zhejiang University(188020*194231701/113)the Key Research and Development Plan of Zhejiang Province(2018C01049)the Fundamental Research Funds for the Central Universities(2017QNA4036 and 2017XZZX001-04).
文摘Graphene-polyaniline(GP)composites are promising electrode materials for supercapacitors but possessing unsatisfied stability,especially under high mass loading,due to the low ion transmission efficiency and serious pulverization effect.To address this issue,we propose a scalable method to achieve highly wettable GP electrodes,showing excellent stability.In addition,our results demonstrate that the performance of electrodes is nearly independent of the mass loading,indicating the great potential of such GP electrodes for practical devices.We attribute the remarkable performance of GP to the delicate precursor of nitrogen doped graphene film assembled by wet-spinning technology.This report provides a strategy to promote the ion penetrating efficiency across the electrodes and deter the pulverization effect,aiming at the practical GP supercapacitor electrodes of high mass loading.