Aims Recent studies revealed convergent temperature sensitivity of ecosys-tem respiration(Re)within aquatic ecosystems and between terrestrial and aquatic ecosystems.We do not know yet whether various terres-trial eco...Aims Recent studies revealed convergent temperature sensitivity of ecosys-tem respiration(Re)within aquatic ecosystems and between terrestrial and aquatic ecosystems.We do not know yet whether various terres-trial ecosystems have consistent or divergent temperature sensitivity.Here,we synthesized 163 eddy covariance flux sites across the world and examined the global variation of the apparent activation energy(Ea),which characterizes the apparent temperature sensitivity of and its interannual variability(IAV)as well as their controlling factors.Methods We used carbon fluxes and meteorological data across FLUXNET sites to calculate mean annual temperature,tempera-ture range,precipitation,global radiation,potential radiation,gross primary productivity and Re by averaging the daily values over the years in each site.Furthermore,we analyzed the sites with>8 years data to examine the IAV of Ea and calculated the standard deviation of Ea across years at each site to character-ize IAV.Important Findings The results showed a widely global variation of Ea,with significantly lower values in the tropical and subtropical areas than in temperate and boreal areas,and significantly higher values in grasslands and wetlands than that in deciduous broadleaf forests and evergreen for-ests.Globally,spatial variations of Ea were explained by changes in temperature and an index of water availability with differing contribution of each explaining variable among climate zones and biomes.IAV and the corresponding coefficient of variation of Ea decreased with increasing latitude,but increased with radiation and corresponding mean annual temperature.The revealed patterns in the spatial and temporal variations of Ea and its controlling factors indicate divergent temperature sensitivity of Re,which could help to improve our predictive understanding of Re in response to climate change.展开更多
基金‘One hundred Talent’award and‘Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues’of the Chinese Academy of Sciences(XDA05050601 to S.N.)Terrestrial Carbon Program at the Office of Science+1 种基金US Department of Energy(DE-FG02-006ER64317)U.S.National Science Foundation(NSF)(DEB 0444518,DEB 0743778,DEB 0840964,DBI 0850290,EPS 0919466 to Y.L.).
文摘Aims Recent studies revealed convergent temperature sensitivity of ecosys-tem respiration(Re)within aquatic ecosystems and between terrestrial and aquatic ecosystems.We do not know yet whether various terres-trial ecosystems have consistent or divergent temperature sensitivity.Here,we synthesized 163 eddy covariance flux sites across the world and examined the global variation of the apparent activation energy(Ea),which characterizes the apparent temperature sensitivity of and its interannual variability(IAV)as well as their controlling factors.Methods We used carbon fluxes and meteorological data across FLUXNET sites to calculate mean annual temperature,tempera-ture range,precipitation,global radiation,potential radiation,gross primary productivity and Re by averaging the daily values over the years in each site.Furthermore,we analyzed the sites with>8 years data to examine the IAV of Ea and calculated the standard deviation of Ea across years at each site to character-ize IAV.Important Findings The results showed a widely global variation of Ea,with significantly lower values in the tropical and subtropical areas than in temperate and boreal areas,and significantly higher values in grasslands and wetlands than that in deciduous broadleaf forests and evergreen for-ests.Globally,spatial variations of Ea were explained by changes in temperature and an index of water availability with differing contribution of each explaining variable among climate zones and biomes.IAV and the corresponding coefficient of variation of Ea decreased with increasing latitude,but increased with radiation and corresponding mean annual temperature.The revealed patterns in the spatial and temporal variations of Ea and its controlling factors indicate divergent temperature sensitivity of Re,which could help to improve our predictive understanding of Re in response to climate change.