We demonstrate a tunable terahertz(THz) absorber based on an indium tin oxide(ITO) metamaterial. The upper ITO cross-shaped metasurface with different arm lengths is fabricated by direct femtosecond laser etching.The ...We demonstrate a tunable terahertz(THz) absorber based on an indium tin oxide(ITO) metamaterial. The upper ITO cross-shaped metasurface with different arm lengths is fabricated by direct femtosecond laser etching.The thickness of the middle dielectric layer is only 60 μm, which makes the absorber very transparent and flexible. The experimental results show that the THz resonant peaks have a high performance near 1 THz. By setting spacers of different thicknesses between the middle layer and the ITO mirror, a new type of tunable THz absorber is proposed. Its absorption peak frequency can be continuously adjusted from 0.92 to 1.04 THz between TE and TM polarization. This transparent THz metamaterial absorber is expected to be widely used in THz imaging, sensing, and biological detection.展开更多
Measuring the microscopic temperature of graphene is challenging.We used cholesteric liquid crystal microcapsules(CLCMs)as temperature sensors to detect the local temperature of three-dimensional porous graphene throu...Measuring the microscopic temperature of graphene is challenging.We used cholesteric liquid crystal microcapsules(CLCMs)as temperature sensors to detect the local temperature of three-dimensional porous graphene through quantitative visualization.Based on a CLCM(~20μm in size),we determined the temperature variation in a small area with an accuracy of 0.1℃.By analyzing the color changes between two CLCMs,we demonstrated the temperature changes dynamically in a region with a diameter of approximately 110μm.Furthermore,by comparing the color evolution among the three CLCMs,we visualized the anisotropic thermal properties in the micro-zone.This convenient and low-cost temperature measurement method is expected to further improve graphene-based devices.展开更多
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(No. 61605088)the Openof the National Laboratory of Solid State Microstructures,China+1 种基金the Fundamental Research Funds for the Central Universities (No. 021314380095)the China Postdoctoral Science Foundation (No. 2019M651768)。
文摘We demonstrate a tunable terahertz(THz) absorber based on an indium tin oxide(ITO) metamaterial. The upper ITO cross-shaped metasurface with different arm lengths is fabricated by direct femtosecond laser etching.The thickness of the middle dielectric layer is only 60 μm, which makes the absorber very transparent and flexible. The experimental results show that the THz resonant peaks have a high performance near 1 THz. By setting spacers of different thicknesses between the middle layer and the ITO mirror, a new type of tunable THz absorber is proposed. Its absorption peak frequency can be continuously adjusted from 0.92 to 1.04 THz between TE and TM polarization. This transparent THz metamaterial absorber is expected to be widely used in THz imaging, sensing, and biological detection.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(No.61605088)the Natural Science Foundation of Jiangsu Province,China(No.BK20150845)+1 种基金the Open Foundation Project of the National Laboratory of Solid State Microstructures,Chinathe China Postdoctoral Science Foundation(No.2019M651768)。
文摘Measuring the microscopic temperature of graphene is challenging.We used cholesteric liquid crystal microcapsules(CLCMs)as temperature sensors to detect the local temperature of three-dimensional porous graphene through quantitative visualization.Based on a CLCM(~20μm in size),we determined the temperature variation in a small area with an accuracy of 0.1℃.By analyzing the color changes between two CLCMs,we demonstrated the temperature changes dynamically in a region with a diameter of approximately 110μm.Furthermore,by comparing the color evolution among the three CLCMs,we visualized the anisotropic thermal properties in the micro-zone.This convenient and low-cost temperature measurement method is expected to further improve graphene-based devices.