Photocatalytic activation of peroxymonosulfate (PMS) has garnered a lot of interest in the field of wastewater treatment. Herein, a plasmonic Ag nanoparticles decorated MIL-101(Fe) hybrid was synthesized through a pho...Photocatalytic activation of peroxymonosulfate (PMS) has garnered a lot of interest in the field of wastewater treatment. Herein, a plasmonic Ag nanoparticles decorated MIL-101(Fe) hybrid was synthesized through a photodeposition process. Upon light irradiation, the Ag/MIL-101(Fe) exhibit reinforced photocatalytic activities for elimination of bisphenol A (BPA) with PMS. The optimized 2.0% Ag/MIL-101(Fe) composite presented the highest photocatalytic activity with kinetic constant k of 0.102 min-1, which was about 10-fold of the pristine MIL-101(Fe). Loading of plasmonic Ag into MIL-101(Fe) boosts photoinduced carrier separation and accelerates PMS activation to generate strong oxidative radicals. Photoelectrochemical tests and multiple spectroscopic studies confirmed the promoted charge carrier separation and transfer capability of Ag/MIL-101(Fe). Combining the results of radical trapping experiments and electron spin resonance (ESR), the formed SO4·-, ·OH, ·O2- and 1O2 had a significant role in the photocatalytic process. According to intermediate study, the degradation pathway was studied, and the possible mechanism was proposed.展开更多
基金Natural Science Foundation of Hebei Province, China (No. B2020202044)the Open Foundation of Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, China (No. KLIEEE-21-04).
文摘Photocatalytic activation of peroxymonosulfate (PMS) has garnered a lot of interest in the field of wastewater treatment. Herein, a plasmonic Ag nanoparticles decorated MIL-101(Fe) hybrid was synthesized through a photodeposition process. Upon light irradiation, the Ag/MIL-101(Fe) exhibit reinforced photocatalytic activities for elimination of bisphenol A (BPA) with PMS. The optimized 2.0% Ag/MIL-101(Fe) composite presented the highest photocatalytic activity with kinetic constant k of 0.102 min-1, which was about 10-fold of the pristine MIL-101(Fe). Loading of plasmonic Ag into MIL-101(Fe) boosts photoinduced carrier separation and accelerates PMS activation to generate strong oxidative radicals. Photoelectrochemical tests and multiple spectroscopic studies confirmed the promoted charge carrier separation and transfer capability of Ag/MIL-101(Fe). Combining the results of radical trapping experiments and electron spin resonance (ESR), the formed SO4·-, ·OH, ·O2- and 1O2 had a significant role in the photocatalytic process. According to intermediate study, the degradation pathway was studied, and the possible mechanism was proposed.