期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Laboratory and numerical modelling of irrigation infiltration and nitrogen leaching in homogeneous soils
1
作者 Lei WU ruizhi li +4 位作者 Yan WANG Zongjun GUO Jiaheng li Hang YANG Xiaoyi MA 《Pedosphere》 SCIE CAS CSCD 2024年第1期146-158,共13页
Nitrogen (N) plays a key role in crop growth and production;however,data are lacking especially regarding the interaction of biochar,grass cover,and irrigation on N leaching in saturated soil profiles.Eighteen soil co... Nitrogen (N) plays a key role in crop growth and production;however,data are lacking especially regarding the interaction of biochar,grass cover,and irrigation on N leaching in saturated soil profiles.Eighteen soil columns with 20-cm diameter and 60-cm height were designed to characterize the effects of different grass cover and biochar combinations,i.e.,bare soil+0%biochar (control,CK),perennial ryegrass+0%biochar (C1),Festuca arundinacea+0%biochar (C2),perennial ryegrass+1%biochar (C3),perennial ryegrass+2%biochar (C4),perennial ryegrass+3%biochar (C5),F.arundinacea+1%biochar (C6),F.arundinacea+2% biochar (C7),and F.arundinacea+3%biochar (C8),on periodic irrigation infiltration and N leaching in homogeneous loess soils from July to December 2020.Leachates in CK were 10.2%–35.3%higher than those in C1 and C2.Both perennial ryegrass and F.arundinacea decreased the volumes of leachates and delayed the leaching process in the 1%,2%,and 3%biochar treatments,and the vertical leaching rate decreased with biochar addition.The N leaching losses were concentrated in the first few leaching tests,and both total N (TN) and nitrate (NO_(3)^(-))-N concentrations in CK and C1–C8 decreased with increasing leaching test times.Biochar addition (1%,2%,and 3%) could further reduce the leaching risk of NO_(3)^(-)-N and the NO_(3)^(-)-N loss decreased with biochar addition.However,compared to 1%biochar,2% biochar promoted the leaching of TN under both grass cover types.The N leaching losses in CK,C1,C2,C3,C4,C6,and C7 were primarily in the form of NO_(3)^(-)-N.Among these treatments,CK,C1,and C2had the highest cumulative leaching fractions NO_(3)^(-)-N (>90%),followed by those in C3,C4,C6,and C7 (>80%).The cumulative leaching fraction of NO_(3)^(-)-N decreased with increasing leaching test times and biochar addition,and 3%biochar addition (i.e.,C5 and C8) reduced it to approximately 50%.The one-dimensional advective-dispersive-reactive transport equation can be used as an effective numerical approach to simulate and predict NO_(3)^(-)-N leaching in saturated homogeneous soils.Understanding the effects of different biochar and grass combinations on N leaching can help us design environmentally friendly interventions to manage irrigated farming ecosystems and reduce N leaching into groundwater. 展开更多
关键词 leaching loss nitrate nitrogen BIOCHAR grass cover analytical modelling
原文传递
Research on Surface Defect Detection Method of E-TPU Midsole Based on Machine Vision 被引量:2
2
作者 ruizhi li Fang Tian Shiqiang Chen 《Journal of Computer and Communications》 2020年第11期145-160,共16页
In the industrial production of expanded thermoplastic polyurethane (E-TPU) midsoles, the surface defects still rely on manual inspection at present, and the eligibility criteria are uneven. Therefore, this paper prop... In the industrial production of expanded thermoplastic polyurethane (E-TPU) midsoles, the surface defects still rely on manual inspection at present, and the eligibility criteria are uneven. Therefore, this paper proposes an E-TPU midsole surface defect detection method based on machine vision to achieve automatic detection and defect classification. The proposed method is divided into three parts: image preprocessing, block defect detection, and linear defect detection. Image preprocessing uses RGB three channel self-inspection to identify scorch and color pollution. Block defect detection uses superpixel segmentation and background prior mining to determine holes, impurities, and dirt. Linear defect detection uses Gabor filter and Hough transform to detect indentation and convex marks. After image preprocessing, block defect detection and linear defect detection are simultaneously performed by parallel computing. The false positive rate (FPR) of the proposed method in this paper is 8.3%, the false negatives rate (FNR) of the hole is 4.7%, the FNR of indentation is 2.1%, and the running time does not exceed 1.6 s. The test results show that this method can quickly and accurately detect various defects in the E-TPU midsole. 展开更多
关键词 Midsole Surface Defect Detection Image Processing Linear Defect Detection Block Defect Detection
下载PDF
CNKSR2 interactome analysis indicates its association with the centrosome/microtubule system
3
作者 lin Yin Yalan Xu +9 位作者 Jie Mu Yu Leng Lei Ma Yu Zheng ruizhi li Yin Wang Peifeng li Hai Zhu Dong Wang Jing li 《Neural Regeneration Research》 SCIE CAS 2025年第8期2420-2432,共13页
The protein connector enhancer of kinase suppressor of Ras 2(CNKSR2),present in both the postsynaptic density and cytoplasm of neurons,is a scaffolding protein with several protein-binding domains.Variants of the CNKS... The protein connector enhancer of kinase suppressor of Ras 2(CNKSR2),present in both the postsynaptic density and cytoplasm of neurons,is a scaffolding protein with several protein-binding domains.Variants of the CNKSR2 gene have been implicated in neurodevelopmental disorders,particularly intellectual disability,although the precise mechanism involved has not yet been fully understood.Research has demonstrated that CNKSR2 plays a role in facilitating the localization of postsynaptic density protein complexes to the membrane,thereby influencing synaptic signaling and the morphogenesis of dendritic spines.However,the function of CNKSR2 in the cytoplasm remains to be elucidated.In this study,we used immunoprecipitation and high-resolution liquid chromatography-mass spectrometry to identify the interactors of CNKSR2.Through a combination of bioinformatic analysis and cytological experiments,we found that the CNKSR2 interactors were significantly enriched in the proteome of the centrosome.We also showed that CNKSR2 interacted with the microtubule protein DYNC1H1 and with the centrosome marker CEP290.Subsequent colocalization analysis confirmed the centrosomal localization of CNKSR2.When we downregulated CNKSR2 expression in mouse neuroblastoma cells(Neuro 2A),we observed significant changes in the expression of numerous centrosomal genes.This manipulation also affected centrosome-related functions,including cell size and shape,cell proliferation,and motility.Furthermore,we found that CNKSR2 interactors were highly enriched in de novo variants associated with intellectual disability and autism spectrum disorder.Our findings establish a connection between CNKSR2 and the centrosome,and offer new insights into the underlying mechanisms of neurodevelopmental disorders. 展开更多
关键词 autism spectrum disorder centrosome CNKSR2 intellectual disability interactome mass spectrometry microtubule neurodevelopmental disease protein complexes protein-protein interactions
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部