期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Automorphism group of Green ring of Sweedler Hopf algebra 被引量:4
1
作者 Tingting JIA ruju zhao Libin LI 《Frontiers of Mathematics in China》 SCIE CSCD 2016年第4期921-932,共12页
Let H2 be Sweedler's 4-dimensional Hopf algebra and r(H2) be the corresponding Green ring of H2. In this paper, we investigate the automorphism groups of Green ring r(H2) and Green algebra F(H2) = r(H2) zF, ... Let H2 be Sweedler's 4-dimensional Hopf algebra and r(H2) be the corresponding Green ring of H2. In this paper, we investigate the automorphism groups of Green ring r(H2) and Green algebra F(H2) = r(H2) zF, where F is a field, whose characteristics is not equal to 2. We prove that the automorphism group of r(H2) is isomorphic to K4, where K4 is the Klein group, and the automorphism group of F(H2) is the semidirect product of Z2 and G, where G = F / {1/2} with multiplication given by a. b = 1 - a - b + 2ab. 展开更多
关键词 Automorphism group Green ring Green algebra Sweedler Hopf algebra
原文传递
Irreducible Z+-modules of near-group fusion ring K(Z3, 3) 被引量:3
2
作者 Chengtao YUAN ruju zhao Libin LI 《Frontiers of Mathematics in China》 SCIE CSCD 2018年第4期947-966,共20页
The near-group rings are an important class of fusion rings in the theory of tensor categories. In this paper, the irreducible Z+-modules over the near-group fusion ring K(Z3, 3) are explicitly classified. It turns... The near-group rings are an important class of fusion rings in the theory of tensor categories. In this paper, the irreducible Z+-modules over the near-group fusion ring K(Z3, 3) are explicitly classified. It turns out that there are only four inequivalent irreducible Z+-modules of rank 2 and two inequivalent irreducible Z+-modules of rank 4 over K(Z3, 3). 展开更多
关键词 irreducible Z+-module near group ring fusion ring
原文传递
The Automorphism Group of Green Algebra of 9-Dimensional Taft Hopf Algebra 被引量:1
3
作者 ruju zhao Chengtao Yuan Libin Li 《Algebra Colloquium》 SCIE CSCD 2020年第4期767-798,共32页
Let H3 be the 9-dimensional Taft Hopf algebra,let r(H3)be the corresponding Green ring of H3,and let Aut(R(H3))be the automorphism group of Green algebra R(H3)=R■Zr(H3)over the real number fieldR.We prove that the qu... Let H3 be the 9-dimensional Taft Hopf algebra,let r(H3)be the corresponding Green ring of H3,and let Aut(R(H3))be the automorphism group of Green algebra R(H3)=R■Zr(H3)over the real number fieldR.We prove that the quotient group Aut(R(H3))/T1 is isomorphic to the direct product of the dihedral group of order 12 and the cyclic group of order 2,where T1 is the isomorphism class which contains the identity map and is isomorphic to a group G={(c,d)∈R^(2)∣∣(c,d)≠(−1/3,−1/6)}with multiplication given by(c1,d1)⋅(c2,d2)=(c1+c2+2c1c2−4d1d2+2c1d2+2d1c2,d1+d2−2c1c2−2d1d2+4c1d2+4d1c2). 展开更多
关键词 auto morphism group Green ring Green algebra 9-dimensional Taft Hopf algebra
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部