The first photometric,spectroscopic and period variation studies of neglected short-period eclipsing binary V2840Cygni are presented.High mass ratio contact binaries(HMRCBs),especially those in the weak-contact config...The first photometric,spectroscopic and period variation studies of neglected short-period eclipsing binary V2840Cygni are presented.High mass ratio contact binaries(HMRCBs),especially those in the weak-contact configuration,are vital when probing the evolutionary models of contact binaries(CBs) using stellar parameters.The photometric solutions reveal the weak-contact nature of V2840 Cygni with a high mass ratio(~1.36),motivating us to investigate the nature of such binaries.The period variation study of V2840 Cygni spanning 15 yr shows a secular period decrease at a rate of ~5.5 × 10^(-7) day yr^(-1),indicating mass transfer between the components.The superimposed cyclic variation provides a basic understanding of the possible third body(P_(3)- 8 yr,m_(3)- 0.51 M_(⊙)).Following the derived parameters,the evolution of the system is discussed based on the thermal relaxation oscillation(TRO) model.It is found that V2840 Cygni falls in a special category of HMRCBs,which validates TRO.To characterize the nature of HMRCBs,a catalog of 59 CBs with high mass ratios has been compiled along with their derived parameters from the literature.For all the HMRCBs in the study,a possible correlation between their contact configuration and observed period variations for relative log J_(rel) is discussed.The spectroscopic study of V2840 Cygni provides evidence of the presence of magnetic activity in the system and the existence of ongoing mass transfer which is additionally deduced from the period variation study.The LAMOST spectra of 17 HMRCBs are collected to interpret the stellar magnetic activity in such systems.展开更多
We carry out a re-analysis of the photometric data in Rclc bands which were taken during the Nainital Microlensing Survey from 1998 to 2002 with the aim to detect gravitational microlensing events in the direction of ...We carry out a re-analysis of the photometric data in Rclc bands which were taken during the Nainital Microlensing Survey from 1998 to 2002 with the aim to detect gravitational microlensing events in the direction of M31. Here, we do photometric analysis of a faint W UMa binary CSS_JO04259.3+410629 identified in the target field. The orbital period of this star is found to be 0.266402±0.000018 d. The photometric mass ratio, q, is found to be 0.28±0.01. The photometric light curves are investigated using the Wilson-Devinney (WD) code and absolute parameters are determined using empirical relations which provide masses and radii of the binary as M1 = 1.19±0.09M⊙, M2 = 0.33±0.02M⊙ and R1 = 1.02±0.04R⊙, R2 = 0.58±0.08Re respectively based on Rc band data. Quite similar values are found by analyzing/c band data. From the photometric light curve examination, the star is understood to be a low mass-ratio overcontact binary of A-subtype with a high fill-out factor of about 47%. The binary system is found to be located approximately at a distance of 2.64±0.03 kpc having a separation of 2.01 ±0.05 Re between the two components.展开更多
We present photometric analysis of the two W UMa type binaries identified in the field of distant open star cluster NGC 6866. Although these systems, namely ID487 and ID494, were reported by Joshi et al., a detailed s...We present photometric analysis of the two W UMa type binaries identified in the field of distant open star cluster NGC 6866. Although these systems, namely ID487 and ID494, were reported by Joshi et al., a detailed study of these stars has not been carried out before. The orbital periods of these stars are found to be 0.415110±0.000001 day and 0.366709±0.000004 day, respectively. Based on the photometric and infrared colors, we find their respective spectral types to be K0 and K3. The photometric light vari- ations of both stars show the O'Connell effect which can be explained by employing a dark spot on the secondary components. The V and I band light curves are analyzed using the Wilson-Devinney (WD) code and relations given by Gazeas which yield radii and masses for the binary components of star ID487 of R1 = 1.24 ± 0.01R,R2 = 1.11 4- 0.02Re, and M1 = 1.24 ± 0.02Me, M2 = 0.96 ±0.05Me and for star ID494 of R1 = 1.22 ± 0.02Re, R2 = 0.81 4- 0.01 Re, and M1 = 1.20 4- 0.06 Me, M2 = 0.47 4- 0.01 Me.展开更多
基金Funding for the project has been provided by the National Development and Reform Commission。
文摘The first photometric,spectroscopic and period variation studies of neglected short-period eclipsing binary V2840Cygni are presented.High mass ratio contact binaries(HMRCBs),especially those in the weak-contact configuration,are vital when probing the evolutionary models of contact binaries(CBs) using stellar parameters.The photometric solutions reveal the weak-contact nature of V2840 Cygni with a high mass ratio(~1.36),motivating us to investigate the nature of such binaries.The period variation study of V2840 Cygni spanning 15 yr shows a secular period decrease at a rate of ~5.5 × 10^(-7) day yr^(-1),indicating mass transfer between the components.The superimposed cyclic variation provides a basic understanding of the possible third body(P_(3)- 8 yr,m_(3)- 0.51 M_(⊙)).Following the derived parameters,the evolution of the system is discussed based on the thermal relaxation oscillation(TRO) model.It is found that V2840 Cygni falls in a special category of HMRCBs,which validates TRO.To characterize the nature of HMRCBs,a catalog of 59 CBs with high mass ratios has been compiled along with their derived parameters from the literature.For all the HMRCBs in the study,a possible correlation between their contact configuration and observed period variations for relative log J_(rel) is discussed.The spectroscopic study of V2840 Cygni provides evidence of the presence of magnetic activity in the system and the existence of ongoing mass transfer which is additionally deduced from the period variation study.The LAMOST spectra of 17 HMRCBs are collected to interpret the stellar magnetic activity in such systems.
基金financial support from the project DST/INT/SA/P-02financial support from the project UGC-BSR research Start-Up Grant Sanctioned vide UGC Order No. F. 30-108/2015(BSR) of UGC
文摘We carry out a re-analysis of the photometric data in Rclc bands which were taken during the Nainital Microlensing Survey from 1998 to 2002 with the aim to detect gravitational microlensing events in the direction of M31. Here, we do photometric analysis of a faint W UMa binary CSS_JO04259.3+410629 identified in the target field. The orbital period of this star is found to be 0.266402±0.000018 d. The photometric mass ratio, q, is found to be 0.28±0.01. The photometric light curves are investigated using the Wilson-Devinney (WD) code and absolute parameters are determined using empirical relations which provide masses and radii of the binary as M1 = 1.19±0.09M⊙, M2 = 0.33±0.02M⊙ and R1 = 1.02±0.04R⊙, R2 = 0.58±0.08Re respectively based on Rc band data. Quite similar values are found by analyzing/c band data. From the photometric light curve examination, the star is understood to be a low mass-ratio overcontact binary of A-subtype with a high fill-out factor of about 47%. The binary system is found to be located approximately at a distance of 2.64±0.03 kpc having a separation of 2.01 ±0.05 Re between the two components.
基金financial support from the project DST/INT/SA/P-02RJ acknowledges the financial support from the project UGC-BSR research Start-Up Grant Sanctioned vide UGC Order No.F.30-108/2015(BSR)of UGC,under which part of the work has been carried out
文摘We present photometric analysis of the two W UMa type binaries identified in the field of distant open star cluster NGC 6866. Although these systems, namely ID487 and ID494, were reported by Joshi et al., a detailed study of these stars has not been carried out before. The orbital periods of these stars are found to be 0.415110±0.000001 day and 0.366709±0.000004 day, respectively. Based on the photometric and infrared colors, we find their respective spectral types to be K0 and K3. The photometric light vari- ations of both stars show the O'Connell effect which can be explained by employing a dark spot on the secondary components. The V and I band light curves are analyzed using the Wilson-Devinney (WD) code and relations given by Gazeas which yield radii and masses for the binary components of star ID487 of R1 = 1.24 ± 0.01R,R2 = 1.11 4- 0.02Re, and M1 = 1.24 ± 0.02Me, M2 = 0.96 ±0.05Me and for star ID494 of R1 = 1.22 ± 0.02Re, R2 = 0.81 4- 0.01 Re, and M1 = 1.20 4- 0.06 Me, M2 = 0.47 4- 0.01 Me.