We have experimentally achieved the all-optical trapping of a ^(40)Ca^(+)ion.An optical dipole trap was established using a high-power,far-detuned,tightly focused laser with a wavelength of 532 nm.The single ^(40)Ca^(...We have experimentally achieved the all-optical trapping of a ^(40)Ca^(+)ion.An optical dipole trap was established using a high-power,far-detuned,tightly focused laser with a wavelength of 532 nm.The single ^(40)Ca^(+)ion was trapped without any RF fields and demonstrated a long lifetime of over 3 s.In this experiment,we implemented several measures to improve the optical trapping probability,including focusing the dipole beam waist near the diffraction limit,precisely compensating for stray electric fields,and mitigating electron shelving in metastable states.The optical trapping of a ^(40)Ca^(+)ion eliminates the influence of micromotion induced by RF fields,potentially paving the way for development of all-optical trapping ion optical clocks.展开更多
Future applications of portable40Ca^(+)optical clocks require reliable magnetic field stabilization to improve frequency stability, which can be achieved by implementing an active and passive magnetic field noise supp...Future applications of portable40Ca^(+)optical clocks require reliable magnetic field stabilization to improve frequency stability, which can be achieved by implementing an active and passive magnetic field noise suppression system. On the one hand, we have optimized the magnetic shielding performance of the portable optical clock by reducing its apertures and optimizing its geometry;on the other hand, we have introduced an active magnetic field noise suppression system to further suppress the magnetic field noise experienced by the ions. These efforts reduced the ambient magnetic field noise by about 10000 times, significantly reduced the linewidth of the clock transition spectrum, improved the stability of the portable40Ca+optical clock, and created the conditions for using portable optical clocks in non-laboratory magnetic field environments. This active magnetic field suppression scheme has the advantages of simple installation and wide applicability.展开更多
A liquid-nitrogen cryogenic40Ca^(+)optical clock is presented that is designed to greatly reduce the blackbody radiation(BBR) shift. The ion trap, the electrodes and the in-vacuum BBR shield are installed under the li...A liquid-nitrogen cryogenic40Ca^(+)optical clock is presented that is designed to greatly reduce the blackbody radiation(BBR) shift. The ion trap, the electrodes and the in-vacuum BBR shield are installed under the liquid-nitrogen container,keeping the ions in a cryogenic environment at liquid-nitrogen temperature. Compared with the first design in our previous work, many improvements have been made to increase the performance. The liquid-nitrogen maintenance time has been increased by about three times by increasing the volume of the liquid-nitrogen container;the trap position recovery time after refilling the liquid-nitrogen container has been decreased more than three times by using a better fixation scheme in the liquid-nitrogen container;and the magnetic field noise felt by the ions has been decreased more than three times by a better design of the magnetic shielding system. These optimizations make the scheme for reducing the BBR shift uncertainty of liquid-nitrogen-cooled optical clocks more mature and stable, and develop a stable lock with a narrower linewidth spectrum,which would be very beneficial for further reducing the overall systematic uncertainty of optical clocks.展开更多
基金supported by the National Basic Research R&D Program of China(Grant Nos.2022YFB3904001 and 2018YFA0307500)the National Natural Science Foundation of China(Grant Nos.12022414 and 11934014)+1 种基金the Natural Science Foundation of Hubei Province(Grant No.2022CFA013)the CAS Project for Young Scientists in Basic Research(Grant Nos.YSBR-085 and YSBR-055)。
文摘We have experimentally achieved the all-optical trapping of a ^(40)Ca^(+)ion.An optical dipole trap was established using a high-power,far-detuned,tightly focused laser with a wavelength of 532 nm.The single ^(40)Ca^(+)ion was trapped without any RF fields and demonstrated a long lifetime of over 3 s.In this experiment,we implemented several measures to improve the optical trapping probability,including focusing the dipole beam waist near the diffraction limit,precisely compensating for stray electric fields,and mitigating electron shelving in metastable states.The optical trapping of a ^(40)Ca^(+)ion eliminates the influence of micromotion induced by RF fields,potentially paving the way for development of all-optical trapping ion optical clocks.
基金supported by the National Key R&D Program of China (Grant Nos.2022YFB3904001, 2022YFB3904004, and 2018YFA0307500)the National Natural Science Foundation of China (Grant Nos. 12022414 and 12121004)+3 种基金the CAS Youth Innovation Promotion Association (Grant Nos. Y201963 and Y2022099)the Natural Science Foundation of Hubei Province (Grant No. 2022CFA013)the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-055)the Interdisciplinary Cultivation Project of the Innovation Academy for Precision Measurement of Science and Technology (Grant No. S21S2201)。
文摘Future applications of portable40Ca^(+)optical clocks require reliable magnetic field stabilization to improve frequency stability, which can be achieved by implementing an active and passive magnetic field noise suppression system. On the one hand, we have optimized the magnetic shielding performance of the portable optical clock by reducing its apertures and optimizing its geometry;on the other hand, we have introduced an active magnetic field noise suppression system to further suppress the magnetic field noise experienced by the ions. These efforts reduced the ambient magnetic field noise by about 10000 times, significantly reduced the linewidth of the clock transition spectrum, improved the stability of the portable40Ca+optical clock, and created the conditions for using portable optical clocks in non-laboratory magnetic field environments. This active magnetic field suppression scheme has the advantages of simple installation and wide applicability.
基金supported by the National Key R&D Program of China (Grant Nos. 2022YFB3904001 and 2018YFA0307500)the National Natural Science Foundation of China (Grant Nos. 12121004 and 12022414)+4 种基金Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030100)CAS Project for Young Scientists in Basic Research (Grant No. YSBR055)CAS Youth Innovation Promotion Association (Grant Nos. Y201963 and Y2022099)the Natural Science Foundation of Hubei Province (Grant No. 2022CFA013)the Interdisciplinary Cultivation Project of the Innovation Academy for Precision Measurement of Science and Technology (Grant No. S21S2201)。
文摘A liquid-nitrogen cryogenic40Ca^(+)optical clock is presented that is designed to greatly reduce the blackbody radiation(BBR) shift. The ion trap, the electrodes and the in-vacuum BBR shield are installed under the liquid-nitrogen container,keeping the ions in a cryogenic environment at liquid-nitrogen temperature. Compared with the first design in our previous work, many improvements have been made to increase the performance. The liquid-nitrogen maintenance time has been increased by about three times by increasing the volume of the liquid-nitrogen container;the trap position recovery time after refilling the liquid-nitrogen container has been decreased more than three times by using a better fixation scheme in the liquid-nitrogen container;and the magnetic field noise felt by the ions has been decreased more than three times by a better design of the magnetic shielding system. These optimizations make the scheme for reducing the BBR shift uncertainty of liquid-nitrogen-cooled optical clocks more mature and stable, and develop a stable lock with a narrower linewidth spectrum,which would be very beneficial for further reducing the overall systematic uncertainty of optical clocks.