Let H be a Hilbert space and A be a standard *-subalgebra of B(H). We show that a bijective map Ф : A →A preserves the Lie-skew product AB - BA* if and only if there is a unitary or conjugate unitary operator U...Let H be a Hilbert space and A be a standard *-subalgebra of B(H). We show that a bijective map Ф : A →A preserves the Lie-skew product AB - BA* if and only if there is a unitary or conjugate unitary operator U ∈A(H) such that Ф(A) = UAU* for all A ∈ A, that is, Фis a linear * -isomorphism or a conjugate linear *-isomorphism.展开更多
基金supported by Tianyuan Funds of China (Grant No. 10826065)Youth Funds of Shanxi (Grant No. 2009021002)+1 种基金 the second author is supported by National Natural Foundation of China (Grant No.10771157) Research Grant to Returned Scholars of Shanxi (2007-38)
文摘Let H be a Hilbert space and A be a standard *-subalgebra of B(H). We show that a bijective map Ф : A →A preserves the Lie-skew product AB - BA* if and only if there is a unitary or conjugate unitary operator U ∈A(H) such that Ф(A) = UAU* for all A ∈ A, that is, Фis a linear * -isomorphism or a conjugate linear *-isomorphism.