期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Studies on aluminum powder combustion in detonation environment 被引量:1
1
作者 Jian-Xin Nie run-zhe kan +3 位作者 Qing-Jie Jiao Qiu-Shi Wang Xue-Yong Guo Shi Yan 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期426-435,共10页
The combustion mechanism of aluminum particles in a detonation environment characterized by high temperature(in unit 10^(3)K),high pressure(in unit GPa),and high-speed motion(in units km/s)was studied,and a combustion... The combustion mechanism of aluminum particles in a detonation environment characterized by high temperature(in unit 10^(3)K),high pressure(in unit GPa),and high-speed motion(in units km/s)was studied,and a combustion model of the aluminum particles in detonation environment was established.Based on this model,a combustion control equation for aluminum particles in detonation environment was obtained.It can be seen from the control equation that the burning time of aluminum particle is mainly affected by the particle size,system temperature,and diffusion coefficient.The calculation result shows that a higher system temperature,larger diffusion coefficient,and smaller particle size lead to a faster burn rate and shorter burning time for aluminum particles.After considering the particle size distribution characteristics of aluminum powder,the application of the combustion control equation was extended from single aluminum particles to nonuniform aluminum powder,and the calculated time corresponding to the peak burn rate of aluminum powder was in good agreement with the experimental electrical conductivity results.This equation can quantitatively describe the combustion behavior of aluminum powder in different detonation environments and provides technical means for quantitative calculation of the aluminum powder combustion process in detonation environment. 展开更多
关键词 aluminum particle combustion model aluminum powder burn rate equation burning time
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部