The adsorption characteristics and mechanisms of modified sepiolite as an adsorbent to recover Pd(Ⅱ) from acidic solutions were studied. The Pd(Ⅱ) adsorption properties were analyzed through isotherm, kinetic and th...The adsorption characteristics and mechanisms of modified sepiolite as an adsorbent to recover Pd(Ⅱ) from acidic solutions were studied. The Pd(Ⅱ) adsorption properties were analyzed through isotherm, kinetic and thermodynamic models. In addition, SEM-EDS, TEM and XPS were applied to investigating the Pd(Ⅱ) adsorption mechanisms onto modified sepiolite. The equilibrium data were well fitted to Langmuir isotherm model with maximum Pd(Ⅱ) adsorption capacity of 322.58 mg/g at 30 ℃. The kinetic data could be satisfactorily simulated by the pseudosecond order model, indicating that the rate-controlling step was chemical adsorption. 99% of Pd(Ⅱ) could be recovered using 1 g/L modified sepiolite when initial concentration of Pd(Ⅱ) was 100 mg/L. The results of reusability studies indicated the modified sepiolite had an acceptable stability and reusability. This study indicated that the modified sepiolite might be an efficient and cost-effective material for Pd(Ⅱ) recovery.展开更多
Contaminated sites from electronic waste(e-waste)dismantling and coking plants feature high concentrations of heavy metals(HMs)and/or polycyclic aromatic hydrocarbons(PAHs)in soil.Mixed contamination(HMsþPAHs)hi...Contaminated sites from electronic waste(e-waste)dismantling and coking plants feature high concentrations of heavy metals(HMs)and/or polycyclic aromatic hydrocarbons(PAHs)in soil.Mixed contamination(HMsþPAHs)hinders land reclamation and affects the microbial diversity and function of soil microbiomes.In this study,we analyzed HM and PAH contamination from an e-waste dismantling plant and a coking plant and evaluated the influences of HM and PAH contamination on soil microbiomes.It was noticed that HMs and PAHs were found in all sites,although the major contaminants of the e-waste dismantling plant site were HMs(such as Cu at 5,947.58±433.44 mg kg^(-1),Zn at 4,961.38±436.51 mg kg^(-1),and Mn at 2,379.07±227.46 mg kg^(-1)),and the major contaminants of the coking plant site were PAHs(such as fluorene at 11,740.06±620.1 mg kg^(-1),acenaphthylene at 211.69±7.04 mg kg^(-1),and pyrene at 183.14±18.89 mg kg^(-1)).The microbiomes(diversity and abundance)of all sites were determined via high-throughput sequencing of 16S rRNA genes,and redundancy analysis was conducted to investigate the relations between soil microbiomes and contaminants.The results showed that the microbiomes of the contaminated sites divergently responded to HMs and PAHs.The abundances of the bacterial genera Sulfuritalea,Pseudomonas,and Sphingobium were positively related to PAHs,while the abundances of the bacterial genera Bryobacter,Nitrospira,and Steroidobacter were positively related to HMs.This study promotes an understanding of how soil microbiomes respond to single and mixed contamination with HMs and PAHs.展开更多
基金Projects(51871250,51504106)supported by the National Natural Science Foundation of ChinaProject(SKL-SPM-201809)supported by the State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals,China+2 种基金Projects(502211852,502211906)supported by the Fundamental Research Funds for the Central Universities of Central South University,ChinaProject(SKYAM005-2016)supported by State Key Laboratory of Applied Microbiology Southern ChinaProjects(2015FB204,2016BA006,2017FA030)supported by the Yunnan Science and Technology Plan Project of China。
文摘The adsorption characteristics and mechanisms of modified sepiolite as an adsorbent to recover Pd(Ⅱ) from acidic solutions were studied. The Pd(Ⅱ) adsorption properties were analyzed through isotherm, kinetic and thermodynamic models. In addition, SEM-EDS, TEM and XPS were applied to investigating the Pd(Ⅱ) adsorption mechanisms onto modified sepiolite. The equilibrium data were well fitted to Langmuir isotherm model with maximum Pd(Ⅱ) adsorption capacity of 322.58 mg/g at 30 ℃. The kinetic data could be satisfactorily simulated by the pseudosecond order model, indicating that the rate-controlling step was chemical adsorption. 99% of Pd(Ⅱ) could be recovered using 1 g/L modified sepiolite when initial concentration of Pd(Ⅱ) was 100 mg/L. The results of reusability studies indicated the modified sepiolite had an acceptable stability and reusability. This study indicated that the modified sepiolite might be an efficient and cost-effective material for Pd(Ⅱ) recovery.
基金the National Natural Science Foundation of China(Grants No.41991333 and 31861133002)the European Unions Horizon 2020 Research and Innovation Program Under Grant Agreement(No.826244)+1 种基金the CAS Engineering Laboratory for Advanced Microbial Technology of Agriculture,Chinese Academy of Sciences(KFJ-PTXM-016)the Science and Technology Basic Resources Survey Special Project(2019FY100700).
文摘Contaminated sites from electronic waste(e-waste)dismantling and coking plants feature high concentrations of heavy metals(HMs)and/or polycyclic aromatic hydrocarbons(PAHs)in soil.Mixed contamination(HMsþPAHs)hinders land reclamation and affects the microbial diversity and function of soil microbiomes.In this study,we analyzed HM and PAH contamination from an e-waste dismantling plant and a coking plant and evaluated the influences of HM and PAH contamination on soil microbiomes.It was noticed that HMs and PAHs were found in all sites,although the major contaminants of the e-waste dismantling plant site were HMs(such as Cu at 5,947.58±433.44 mg kg^(-1),Zn at 4,961.38±436.51 mg kg^(-1),and Mn at 2,379.07±227.46 mg kg^(-1)),and the major contaminants of the coking plant site were PAHs(such as fluorene at 11,740.06±620.1 mg kg^(-1),acenaphthylene at 211.69±7.04 mg kg^(-1),and pyrene at 183.14±18.89 mg kg^(-1)).The microbiomes(diversity and abundance)of all sites were determined via high-throughput sequencing of 16S rRNA genes,and redundancy analysis was conducted to investigate the relations between soil microbiomes and contaminants.The results showed that the microbiomes of the contaminated sites divergently responded to HMs and PAHs.The abundances of the bacterial genera Sulfuritalea,Pseudomonas,and Sphingobium were positively related to PAHs,while the abundances of the bacterial genera Bryobacter,Nitrospira,and Steroidobacter were positively related to HMs.This study promotes an understanding of how soil microbiomes respond to single and mixed contamination with HMs and PAHs.