期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Stabilizing zinc anode via a chelation and desolvation electrolyte additive 被引量:9
1
作者 Jin Cao Dongdong Zhang +4 位作者 rungroj chanajaree Yilei Yue Zhiyuan Zeng Xinyu Zhang Jiaqian Qin 《Advanced Powder Materials》 2022年第1期97-105,共9页
The uncontrollable dendrites growth and intricately water-induced side reactions occurred on zinc anode leads to safety issues and poor electrochemical kinetics,which largely limit the widespread application of zinc-i... The uncontrollable dendrites growth and intricately water-induced side reactions occurred on zinc anode leads to safety issues and poor electrochemical kinetics,which largely limit the widespread application of zinc-ion batteries(ZIBs).Herein,ethylenediaminetetraacetic acid disodium salt(EDTA-2Na)is utilized as an electrolyte additive to strengthen the reversibility and cycling stability of zinc anode.Experimental results and theoretical calculation demonstrate that the EDTA-2Na presents a much stronger coordination with Zn^(2+)when comparing with H_(2)O molecular,implying the EDTA-2Na is capable to enter the solvation shell of[Zn(OH_(2))_(6)]^(2+)and coordinate with Zn^(2+)ions,thus achieving a flat and smooth zinc deposition with less by-products(Zn_(4)SO_(4)(OH)6·xH_(2)O and H_(2)).Consequently,the zinc symmetric battery with EDTA-2Na additive delivers an excellent cycling stability up to 1800 h under current density of 1 mA cm^(-2),and the hydrogen evolution reaction(HER),corrosion,by-product issues are significantly inhibited.Moreover,the rate performance and stability of coin-type and pouch-type Zn||MnO2/graphite batteries are significantly boosted via EDTA-2Na additive(248 mAh g^(-1)at 0.1 A g^(-1),81.3%after 1000 cycles at a A g^(-1)).This kind of electrolyte additive with chelation and desolvation functions shed lights on strategies of improving zinc anode stability for further application of ZIBs. 展开更多
关键词 Zinc-ion battery Zinc anode DENDRITES EDTA-2Na DESOLVATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部