Alzheimer's disease, a progressive neurodegenerative disease, affects learning and memory resulting from cholinergic dysfunction. Scopolamine has been employed to induce Alzheimer's disease-like pathology in vivo an...Alzheimer's disease, a progressive neurodegenerative disease, affects learning and memory resulting from cholinergic dysfunction. Scopolamine has been employed to induce Alzheimer's disease-like pathology in vivo and in vitro through alteration of cholinergic system. N-benzylcinnamide (PT-3), purified from Piper submultinerve, has been shown to exhibit neuroprotective properties against amyloid-β-induced neuronal toxicity in rat cortical primary cell culture and to improve spatial learning and memory of aged rats through alleviating oxidative stress. We proposed a hypothesis that PT3 has a neuroprotective effect against scopolamine-induced cholinergic dysfunction. PT-3 (125-200 nM) pretreatment was performed in human neuroblastoma SH-SY5Y cell line following scopolamine induction. PT-3 (125-200 nM) inhibited scopolamine (2 mM)-induced generation of reactive oxygen species, cellular apoptosis, upregutation of ace- tylcholinesterase activity, downregulation of choline acetyltransferase level, and activation of p38 and JNK signalling pathways. These findings revealed the underlying mechanisms of scopolamine-induced Alzheimer's disease-like cellular dysfunctions, which provide evidence for developing drugs for the treatment of this de- bilitating disease.展开更多
We evaluated the effects of pre-germinated brown rice extract (PGBR ex) with enhanced levels of GABA on proliferation and apoptosis of neuronal SK-N-SH cells line. Firstly, we used HPLC methods to study the level of ...We evaluated the effects of pre-germinated brown rice extract (PGBR ex) with enhanced levels of GABA on proliferation and apoptosis of neuronal SK-N-SH cells line. Firstly, we used HPLC methods to study the level of γ-aminobutyric acid (GABA) in all rice extracts. We found that the concentration of GABA in the PGBR ex were 3 and 8 times higher than the GABA concentration in non-germinated brown rice (BR ex) and white rice (WR ex) compared with the stan- dard GABA respectively. Next we study the protective effects of brown rice extract by investigating various methods, we found that the effects of dose-dependent study by treated with PGBR ex, BR ex and WR ex at (0 - 4000 μg/ml). The data from MTT assay showed that the higher concentration of all rice extracts were not induced toxicity to SK-N-SH cells. To test the protective effect by study the viability of SK-N-SH cells. These results showed that PGBR ex and BR ex can protect cells by significantly increase cells survival up to 29.3% ± 0.01% and13.4% ± 0.07 % (p 56.9% ± 0.02 % (p < 0.05), compared with un- treated cells (control). Next study we test the effect of cells apoptotic by ROS assay and DNA fragmentation. The results showed that PGBR ex were definitely decrease the amount of ROS formation and had a little of DNA ladders comparable with condition that induced by 150 ?M H2O2. Our data indicating that PGBR ex with enhanced levels of GABA effectively inhibit SK-N-SH cells proliferation and apoptosis. These present results suggest that intake of PGBR and BR instead of WR is effective to protect cell proliferation and apoptosis which may be useful nutritional to prevent neuronal cells from neurodegenerative disease.展开更多
基金supported by a joint Mahidol University and The Thailand Research Fund(TRF)grant(IRG5780009)TRF Royal Golden Jubilee Ph.D.Program(grant No.PHD/0175/2552)the Office of the Higher Education Commission,Ministry of Education,Thailand
文摘Alzheimer's disease, a progressive neurodegenerative disease, affects learning and memory resulting from cholinergic dysfunction. Scopolamine has been employed to induce Alzheimer's disease-like pathology in vivo and in vitro through alteration of cholinergic system. N-benzylcinnamide (PT-3), purified from Piper submultinerve, has been shown to exhibit neuroprotective properties against amyloid-β-induced neuronal toxicity in rat cortical primary cell culture and to improve spatial learning and memory of aged rats through alleviating oxidative stress. We proposed a hypothesis that PT3 has a neuroprotective effect against scopolamine-induced cholinergic dysfunction. PT-3 (125-200 nM) pretreatment was performed in human neuroblastoma SH-SY5Y cell line following scopolamine induction. PT-3 (125-200 nM) inhibited scopolamine (2 mM)-induced generation of reactive oxygen species, cellular apoptosis, upregutation of ace- tylcholinesterase activity, downregulation of choline acetyltransferase level, and activation of p38 and JNK signalling pathways. These findings revealed the underlying mechanisms of scopolamine-induced Alzheimer's disease-like cellular dysfunctions, which provide evidence for developing drugs for the treatment of this de- bilitating disease.
文摘We evaluated the effects of pre-germinated brown rice extract (PGBR ex) with enhanced levels of GABA on proliferation and apoptosis of neuronal SK-N-SH cells line. Firstly, we used HPLC methods to study the level of γ-aminobutyric acid (GABA) in all rice extracts. We found that the concentration of GABA in the PGBR ex were 3 and 8 times higher than the GABA concentration in non-germinated brown rice (BR ex) and white rice (WR ex) compared with the stan- dard GABA respectively. Next we study the protective effects of brown rice extract by investigating various methods, we found that the effects of dose-dependent study by treated with PGBR ex, BR ex and WR ex at (0 - 4000 μg/ml). The data from MTT assay showed that the higher concentration of all rice extracts were not induced toxicity to SK-N-SH cells. To test the protective effect by study the viability of SK-N-SH cells. These results showed that PGBR ex and BR ex can protect cells by significantly increase cells survival up to 29.3% ± 0.01% and13.4% ± 0.07 % (p 56.9% ± 0.02 % (p < 0.05), compared with un- treated cells (control). Next study we test the effect of cells apoptotic by ROS assay and DNA fragmentation. The results showed that PGBR ex were definitely decrease the amount of ROS formation and had a little of DNA ladders comparable with condition that induced by 150 ?M H2O2. Our data indicating that PGBR ex with enhanced levels of GABA effectively inhibit SK-N-SH cells proliferation and apoptosis. These present results suggest that intake of PGBR and BR instead of WR is effective to protect cell proliferation and apoptosis which may be useful nutritional to prevent neuronal cells from neurodegenerative disease.