期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Combined “Gateway” and “Spillover” effects originated from a CeNi_(5) alloy catalyst for hydrogen storage of MgH_(2) 被引量:1
1
作者 Mengchen Song runkai xie +4 位作者 Liuting Zhang Xuan Wang Zhendong Yao Tao Wei Danhong Shang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期970-976,共7页
Efficient catalysts enable MgH2 with superior hydrogen storage performance.Herein,we successfully synthesized a catalyst composed of Ce and Ni (i.e.CeNi_(5) alloy) with splendid catalytic action for boosting the hydro... Efficient catalysts enable MgH2 with superior hydrogen storage performance.Herein,we successfully synthesized a catalyst composed of Ce and Ni (i.e.CeNi_(5) alloy) with splendid catalytic action for boosting the hydrogen storage property of magnesium hydride (MgH_(2))The MgH2–5wt%CeNi_(5) composite’s initial hydrogen release temperature was reduced to 174℃ and approximately 6.4wt%H_(2) was released at 275℃ within 10 min.Besides,the dehydrogenation enthalpy of MgH_(2) was slightly decreased by adding CeNi_(5).For hydrogenation,the fully dehydrogenated sample absorbed 4.8wt%H_(2) at a low temperature of 175℃.The hydrogenation apparent activation energy was decreased from(73.60±1.79) to (46.12±7.33) kJ/mol.Microstructure analysis revealed that Mg_(2)Ni/Mg_(2)NiH_(4) and CeH_(2.73) were formed during the process of hydrogen absorption and desorption,exerted combined“Gateway”and“Spillover”effects to reduce the operating temperature and improve the hydrogen storage kinetics of MgH_(2).Our work provides an example of merging“Gateway”and“Spillover”effects in one catalyst and may shed light on designing novel highly-effective catalysts for MgH_(2) in near future. 展开更多
关键词 hydrogen storage magnesium hydride cerium–nickel alloys CATALYSIS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部