Efficient catalysts enable MgH2 with superior hydrogen storage performance.Herein,we successfully synthesized a catalyst composed of Ce and Ni (i.e.CeNi_(5) alloy) with splendid catalytic action for boosting the hydro...Efficient catalysts enable MgH2 with superior hydrogen storage performance.Herein,we successfully synthesized a catalyst composed of Ce and Ni (i.e.CeNi_(5) alloy) with splendid catalytic action for boosting the hydrogen storage property of magnesium hydride (MgH_(2))The MgH2–5wt%CeNi_(5) composite’s initial hydrogen release temperature was reduced to 174℃ and approximately 6.4wt%H_(2) was released at 275℃ within 10 min.Besides,the dehydrogenation enthalpy of MgH_(2) was slightly decreased by adding CeNi_(5).For hydrogenation,the fully dehydrogenated sample absorbed 4.8wt%H_(2) at a low temperature of 175℃.The hydrogenation apparent activation energy was decreased from(73.60±1.79) to (46.12±7.33) kJ/mol.Microstructure analysis revealed that Mg_(2)Ni/Mg_(2)NiH_(4) and CeH_(2.73) were formed during the process of hydrogen absorption and desorption,exerted combined“Gateway”and“Spillover”effects to reduce the operating temperature and improve the hydrogen storage kinetics of MgH_(2).Our work provides an example of merging“Gateway”and“Spillover”effects in one catalyst and may shed light on designing novel highly-effective catalysts for MgH_(2) in near future.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51801078)。
文摘Efficient catalysts enable MgH2 with superior hydrogen storage performance.Herein,we successfully synthesized a catalyst composed of Ce and Ni (i.e.CeNi_(5) alloy) with splendid catalytic action for boosting the hydrogen storage property of magnesium hydride (MgH_(2))The MgH2–5wt%CeNi_(5) composite’s initial hydrogen release temperature was reduced to 174℃ and approximately 6.4wt%H_(2) was released at 275℃ within 10 min.Besides,the dehydrogenation enthalpy of MgH_(2) was slightly decreased by adding CeNi_(5).For hydrogenation,the fully dehydrogenated sample absorbed 4.8wt%H_(2) at a low temperature of 175℃.The hydrogenation apparent activation energy was decreased from(73.60±1.79) to (46.12±7.33) kJ/mol.Microstructure analysis revealed that Mg_(2)Ni/Mg_(2)NiH_(4) and CeH_(2.73) were formed during the process of hydrogen absorption and desorption,exerted combined“Gateway”and“Spillover”effects to reduce the operating temperature and improve the hydrogen storage kinetics of MgH_(2).Our work provides an example of merging“Gateway”and“Spillover”effects in one catalyst and may shed light on designing novel highly-effective catalysts for MgH_(2) in near future.