Dendronized hyperbranched polymer (DHP) is a new kind of polymer, which combines the advantages of dendrimers and hy- perbranched polymers. In this work, two dendronized hyperbranched polymers, DttPG0 and DHPG1, wer...Dendronized hyperbranched polymer (DHP) is a new kind of polymer, which combines the advantages of dendrimers and hy- perbranched polymers. In this work, two dendronized hyperbranched polymers, DttPG0 and DHPG1, were successfully pre- pared through the simple "A3+B2" type Sonogashira coupling reaction. The nonlinear optical (NLO) effects of DHPG0 and DItPG1, characterized by the d33 values, were 183 and 220 pm V-1 respectively, higher than those of their analogues of den- dronized polymers and dendrimers, thanks to the special topological structure. Also, the obtained polymers displayed excellent solubility, good processability, and high thermal stability.展开更多
Two organic sensitizers (LI-33 and LI-34) with double anchoring units were synthesized and utilized for dye sensitized solar cells (DSSCs), which contained thiophene or vinyl thiophene as n-bridge. The introductio...Two organic sensitizers (LI-33 and LI-34) with double anchoring units were synthesized and utilized for dye sensitized solar cells (DSSCs), which contained thiophene or vinyl thiophene as n-bridge. The introduction of double anchoring units can change their absorption spectra and energy levels in a large degree, thus, the better light-harvesting ability and the convenient electron transfer along the whole molecule can be obtained. The solar cell based on LI-34 exhibited a broad incident photon- to-current conversion efficiency (IPCE) spectrum and high conversion efficiency (η=6.05%) with coadsorbent CDCA.展开更多
Four organic sensitizers containing quinoxaline or benzoxadiazole as an auxiliary electron acceptor in conjugated bridge were synthesized and utilized for dyesensitized solar cells (DSSCs). It was found that the inc...Four organic sensitizers containing quinoxaline or benzoxadiazole as an auxiliary electron acceptor in conjugated bridge were synthesized and utilized for dyesensitized solar cells (DSSCs). It was found that the incorporation of different electron-withdrawing moieties can affect the absorption spectra, electronic properties, the interfacial interactions and then the overall conversion efficiencies significantly. Therefore, the appropriate selection of the auxiliary acceptor was important to optimize the photovoltaic performance of solar cells. Among these sensitizers, LI-44 based solar cell showed the best photovoltaic performance: a shortcircuit photocurrent density (Jsc) of 13.90 mA/cm2, an open-circuit photovoltage (Voc) of 0.66 V, and a fill factor (FF) of 0.66, corresponding to an overall conversion efficiency of 6.10% under standard global AM 1.5 solar light conditions.展开更多
基金supported by the National Natural Science Foundation of China(21325416)
文摘Dendronized hyperbranched polymer (DHP) is a new kind of polymer, which combines the advantages of dendrimers and hy- perbranched polymers. In this work, two dendronized hyperbranched polymers, DttPG0 and DHPG1, were successfully pre- pared through the simple "A3+B2" type Sonogashira coupling reaction. The nonlinear optical (NLO) effects of DHPG0 and DItPG1, characterized by the d33 values, were 183 and 220 pm V-1 respectively, higher than those of their analogues of den- dronized polymers and dendrimers, thanks to the special topological structure. Also, the obtained polymers displayed excellent solubility, good processability, and high thermal stability.
基金supported by the National Natural Science Foundation of China(21372003,21325416)the National Basic Research Program of China(2011CB932702)
文摘Two organic sensitizers (LI-33 and LI-34) with double anchoring units were synthesized and utilized for dye sensitized solar cells (DSSCs), which contained thiophene or vinyl thiophene as n-bridge. The introduction of double anchoring units can change their absorption spectra and energy levels in a large degree, thus, the better light-harvesting ability and the convenient electron transfer along the whole molecule can be obtained. The solar cell based on LI-34 exhibited a broad incident photon- to-current conversion efficiency (IPCE) spectrum and high conversion efficiency (η=6.05%) with coadsorbent CDCA.
文摘Four organic sensitizers containing quinoxaline or benzoxadiazole as an auxiliary electron acceptor in conjugated bridge were synthesized and utilized for dyesensitized solar cells (DSSCs). It was found that the incorporation of different electron-withdrawing moieties can affect the absorption spectra, electronic properties, the interfacial interactions and then the overall conversion efficiencies significantly. Therefore, the appropriate selection of the auxiliary acceptor was important to optimize the photovoltaic performance of solar cells. Among these sensitizers, LI-44 based solar cell showed the best photovoltaic performance: a shortcircuit photocurrent density (Jsc) of 13.90 mA/cm2, an open-circuit photovoltage (Voc) of 0.66 V, and a fill factor (FF) of 0.66, corresponding to an overall conversion efficiency of 6.10% under standard global AM 1.5 solar light conditions.