To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter(PM), a test bench for diesel engine exhaust purification was constructed, using indirect nonthermal plasma technology...To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter(PM), a test bench for diesel engine exhaust purification was constructed, using indirect nonthermal plasma technology. The effects of different gas source flow rates on the quantity concentration, composition, and apparent activation energy of PM were investigated, using an engine exhaust particle sizer and a thermo-gravimetric analyzer. The results show that when the gas source flow rate was large, not only the maximum peak quantity concentrations of particles had a large drop, but also the peak quantity concentrations shifted to smaller particle sizes from 100 nm to 80 nm. When the gas source flow rate was 10L min^-1, the total quantity concentration greatly decreased where the removal rate of particles was 79.2%, and the variation of the different mode particle proportion was obvious. Non-thermal plasma(NTP) improved the oxidation ability of volatile matter as well as that of solid carbon. However, the NTP gas source rate had little effects on oxidation activity of volatile matter, while it strongly influenced the oxidation activity of solid carbon. Considering the quantity concentration and oxidation activity of particles, a gas source flow rate of 10L min^-1 was more appropriate for the purification of particles.展开更多
In order to balance the conductivity and flexural strength of graphite composite bipolar plates,the influence of conductive filler on the properties of graphite composite bipolar plate was comprehensively studied by u...In order to balance the conductivity and flexural strength of graphite composite bipolar plates,the influence of conductive filler on the properties of graphite composite bipolar plate was comprehensively studied by using phenolic resin as binder,natural flake graphite as conductive substrate and functional carbon materials with different structures as auxiliary filler.The results show that the particle size of conductive substrate has an important influence on the conductivity enhancement of auxiliary filler.The influence of conductive particle size on auxiliary filler electrical conductivity improvement was first investigated in this research.The effects of various auxiliary filler concentrations on improving electrical conductivity and flexural strength were then examined.This research has substantial implications for the balance of electrical conductivity and flexural strength of graphite composite bipolar plates.展开更多
基金supported by National Natural Science Foundation of China(No.51676089)the major projects of natural science research in colleges and universities in Jiangsu Province(No.16KJA470002)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PADA)
文摘To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter(PM), a test bench for diesel engine exhaust purification was constructed, using indirect nonthermal plasma technology. The effects of different gas source flow rates on the quantity concentration, composition, and apparent activation energy of PM were investigated, using an engine exhaust particle sizer and a thermo-gravimetric analyzer. The results show that when the gas source flow rate was large, not only the maximum peak quantity concentrations of particles had a large drop, but also the peak quantity concentrations shifted to smaller particle sizes from 100 nm to 80 nm. When the gas source flow rate was 10L min^-1, the total quantity concentration greatly decreased where the removal rate of particles was 79.2%, and the variation of the different mode particle proportion was obvious. Non-thermal plasma(NTP) improved the oxidation ability of volatile matter as well as that of solid carbon. However, the NTP gas source rate had little effects on oxidation activity of volatile matter, while it strongly influenced the oxidation activity of solid carbon. Considering the quantity concentration and oxidation activity of particles, a gas source flow rate of 10L min^-1 was more appropriate for the purification of particles.
基金the financial supports from the National Key R&D Program of China(Nos.2020YFB1505904 and 2018YFB1502502-04)。
文摘In order to balance the conductivity and flexural strength of graphite composite bipolar plates,the influence of conductive filler on the properties of graphite composite bipolar plate was comprehensively studied by using phenolic resin as binder,natural flake graphite as conductive substrate and functional carbon materials with different structures as auxiliary filler.The results show that the particle size of conductive substrate has an important influence on the conductivity enhancement of auxiliary filler.The influence of conductive particle size on auxiliary filler electrical conductivity improvement was first investigated in this research.The effects of various auxiliary filler concentrations on improving electrical conductivity and flexural strength were then examined.This research has substantial implications for the balance of electrical conductivity and flexural strength of graphite composite bipolar plates.