With the development of urban construction in China and the improvement of living standards among urban residents,people today have higher requirements for space quality,and the development of urban commercial complex...With the development of urban construction in China and the improvement of living standards among urban residents,people today have higher requirements for space quality,and the development of urban commercial complexes has also become an important part of urban development.In this process,the functions of urban commercial complexes,in terms of culture,leisure,commerce,tourism,and office work,are gradually compounded.The integration of the commercial complex landscape with the urban environment shapes a place that provides more humanized services to the urban population.The landscape facilities in the commercial complex square are no longer just a foil,but they are constantly improved and optimized for the benefit of the crowd.Beginning from the exterior space of commercial complexes,this study investigates and analyzes the landscape design,and based on the external landscape distribution of Happy Harbor and the environment created by the landscape,this paper expounds the commercial landscape design and development of a more comprehensive and humanized commercial urban complex space landscape.展开更多
In this study,current-induced partial magnetization-based switching was realized through the spin–orbit torque(SOT)in single-layer L1_(0) FePt with a perpendicular anisotropy(K_(u⊥))of 1.19×10^(7) erg·cm^(...In this study,current-induced partial magnetization-based switching was realized through the spin–orbit torque(SOT)in single-layer L1_(0) FePt with a perpendicular anisotropy(K_(u⊥))of 1.19×10^(7) erg·cm^(-3)(1 erg·cm^(-3)=0.1 J·m^(-3)),and its corresponding SOT efficiency(βDL)was 8×10^(-6) Oe·(A·cm^(-2))^(-1)(1 Oe=79.57747 A·m^(-1)),which is several times higher than that of the traditional Ta/CoFeB/MgO structure reported in past work.The SOT in the FePt films originated from the structural inversion asymmetry in the FePt films since the dislocations and defects were inhomogeneously distributed within the samples.Furthermore,the FePt grown on MgO with a granular structure had a larger effective SOT field and effi-ciency than that grown on SrTiO_(3)(STO)with a continuous structure.The SOT efficiency was found to be considerably dependent on not only the sputtering temperature-induced chemical ordering but also the lattice mismatch-induced evolution of the microstructure.Our findings can provide a useful means of efficiently electrically controlling a magnetic bit that is highly thermally stable via SOT.展开更多
Multiparty private set intersection(PSI)allows several parties,each holding a set of elements,to jointly compute the intersection without leaking any additional information.With the development of cloud computing,PSI ...Multiparty private set intersection(PSI)allows several parties,each holding a set of elements,to jointly compute the intersection without leaking any additional information.With the development of cloud computing,PSI has a wide range of applications in privacy protection.However,it is complex to build an efficient and reliable scheme to protect user privacy.To address this issue,we propose EMPSI,an efficient PSI(with cardinality)protocol in a multiparty setting.EMPSI avoids using heavy cryptographic primitives(mainly rely on symmetric-key encryption)to achieve better performance.In addition,both PSI and PSI with the cardinality of EMPSI are secure against semi-honest adversaries and allow any number of colluding clients(at least one honest client).We also do experiments to compare EMPSI with some state-of-the-art works.The experimental results show that proposed EMPSI(-CA)has better performance and is scalable in the number of clients and the set size.展开更多
Liquid metal(LM)is a type of metal or alloy that has a low melting point near room temperature and exhibits the properties of both liquids and metals.Such unconventional materials have been gaining increasing attentio...Liquid metal(LM)is a type of metal or alloy that has a low melting point near room temperature and exhibits the properties of both liquids and metals.Such unconventional materials have been gaining increasing attention within the scientific and industrial communities.Recently,fiber-shaped LM and its composites have especially attracted diverse interest owing to their unique merits,such as excellent conductivity,intrinsic stretchability,facile phase transition,and the ability to be woven or knitted into smart fabrics.This review is dedicated to summarizing different aspects of LM-based fibers,such as their material components,fabrication and design strategies,and remarkable applications by way of their representative properties.Typical fabrication approaches,such as 3D printing of pure LM wire,coating the LM shell on the surface of the fiber,injecting a LM core into hollow fibers,and spinning of LM and polymer hybrids have been comparatively illustrated.Moreover,emerging applications that primarily utilize LM fibers have been demonstrated.Finally,future directions and opportunities in the field are discussed.This categorization of LM fibers is expected to facilitate further investigation and practice in the coming society.展开更多
Covalent organic frameworks(COFs) are a class of crystalline porous organic materials with variable structures and fascinating properties. The intrinsic low conductivity impedes their widely application in optoelectro...Covalent organic frameworks(COFs) are a class of crystalline porous organic materials with variable structures and fascinating properties. The intrinsic low conductivity impedes their widely application in optoelectronic. Iodine doping is an effective way to enhance the electrical conductivity of COFs. Here, a novel 3D imine COF with lvt topology is synthesized from two different pentacene derivatives with the same core in the form of structural complementarity. DDHP-COF is a highly crystalline material featuring high surface area of 1679 m^(2)/g and excellent thermal stability up to 490 ℃. Upon doping with iodine, the electrical conductivity can reach as high as 1.5×10^(-2)S/m which is significantly enhanced over 6 orders of magnitude compared with the pristine COF.展开更多
Photo biodegradable film is an ideal degradable mulch film with synergistic effect of photo-degradability and biodegradability.To examine the covering effects of different films,maize was cultivated in the field with ...Photo biodegradable film is an ideal degradable mulch film with synergistic effect of photo-degradability and biodegradability.To examine the covering effects of different films,maize was cultivated in the field with three kinds of degradable films(DF)mulching which had different degradation cycles(DF No.1,No.2 and No.3),with common plastic film mulching and no filming mulching(open ground)as comparison.The degradation rates and degrees of degradable films were examined,and the effects of different films on soil temperature,soil moisture,maize yield and relevant characteristics in each treatment were analyzed.The results indicated that the degradable films had good degradability,and the weight loss rate in 100 d for DF No.1,No.2,and No.3 were 22.31%,19.46%,and 15.63%,which were 4.16,3.63,and 2.92 times of the plastic film,respectively.In the early period of maize growth,the degradable films had good warming effects on soil,which were similar with the plastic film.The effect of DF No.2 on soil water conservation was slightly better than that of DF No.1 or No.3,similar with that of the plastic film.The soil water contents in 0-140 cm depths were significantly higher for DF No.2 than that for the open ground(p<0.05).The degradable films could significantly promote the ear development of maize,improve the ear characteristics,shorten the bald tip,and increase kernel number per plant(KNP)and 1000-kernel weight(TKW).The grain yields(GYs)for DF No.2,No.1,and No.3 were significantly improved,with 35.15%,31.35%,and 30.07%higher than that the open ground respectively(p<0.05).With no significant difference between DF and the plastic film,the GY was increased more for DF No.2 than that for DF No.1 and No.3.The degradable films fulfilled successfully all the functions of the plastic film,thus they were recommended as viable option to the plastic film due to their good degradability.展开更多
文摘With the development of urban construction in China and the improvement of living standards among urban residents,people today have higher requirements for space quality,and the development of urban commercial complexes has also become an important part of urban development.In this process,the functions of urban commercial complexes,in terms of culture,leisure,commerce,tourism,and office work,are gradually compounded.The integration of the commercial complex landscape with the urban environment shapes a place that provides more humanized services to the urban population.The landscape facilities in the commercial complex square are no longer just a foil,but they are constantly improved and optimized for the benefit of the crowd.Beginning from the exterior space of commercial complexes,this study investigates and analyzes the landscape design,and based on the external landscape distribution of Happy Harbor and the environment created by the landscape,this paper expounds the commercial landscape design and development of a more comprehensive and humanized commercial urban complex space landscape.
基金supported by National Key Research and Development Program of China (2020AAA0109005)the National Natural Science Foundation of China (61674062, 51501168, 41574175, and 41204083)+3 种基金the Fundamental Research Funds for the Central Universities of the China University of Geosciences (Wuhan) (CUG150632 and CUGL160414)the Fundamental Research Funds for National Universities of the China University of Geosciences (Wuhan)the Interdisciplinary program of Wuhan National High Magnetic Field Center (WHMFC202119)Huazhong University of Science and Technology, and Fund from Shenzhen Virtual University Park (2021Szvup091)
文摘In this study,current-induced partial magnetization-based switching was realized through the spin–orbit torque(SOT)in single-layer L1_(0) FePt with a perpendicular anisotropy(K_(u⊥))of 1.19×10^(7) erg·cm^(-3)(1 erg·cm^(-3)=0.1 J·m^(-3)),and its corresponding SOT efficiency(βDL)was 8×10^(-6) Oe·(A·cm^(-2))^(-1)(1 Oe=79.57747 A·m^(-1)),which is several times higher than that of the traditional Ta/CoFeB/MgO structure reported in past work.The SOT in the FePt films originated from the structural inversion asymmetry in the FePt films since the dislocations and defects were inhomogeneously distributed within the samples.Furthermore,the FePt grown on MgO with a granular structure had a larger effective SOT field and effi-ciency than that grown on SrTiO_(3)(STO)with a continuous structure.The SOT efficiency was found to be considerably dependent on not only the sputtering temperature-induced chemical ordering but also the lattice mismatch-induced evolution of the microstructure.Our findings can provide a useful means of efficiently electrically controlling a magnetic bit that is highly thermally stable via SOT.
基金supported in part by the National Key Research and Development Program of China(2020YFA0712300)in part by the National Natural Science Foundation of China(Grant Nos.62172162,62132005)。
文摘Multiparty private set intersection(PSI)allows several parties,each holding a set of elements,to jointly compute the intersection without leaking any additional information.With the development of cloud computing,PSI has a wide range of applications in privacy protection.However,it is complex to build an efficient and reliable scheme to protect user privacy.To address this issue,we propose EMPSI,an efficient PSI(with cardinality)protocol in a multiparty setting.EMPSI avoids using heavy cryptographic primitives(mainly rely on symmetric-key encryption)to achieve better performance.In addition,both PSI and PSI with the cardinality of EMPSI are secure against semi-honest adversaries and allow any number of colluding clients(at least one honest client).We also do experiments to compare EMPSI with some state-of-the-art works.The experimental results show that proposed EMPSI(-CA)has better performance and is scalable in the number of clients and the set size.
基金supported by the National Nature Science Foundation of China under Key Project#91748206Shuimu Tsinghua Scholarship and China Postdoctoral Science Foundation:2021M691707.
文摘Liquid metal(LM)is a type of metal or alloy that has a low melting point near room temperature and exhibits the properties of both liquids and metals.Such unconventional materials have been gaining increasing attention within the scientific and industrial communities.Recently,fiber-shaped LM and its composites have especially attracted diverse interest owing to their unique merits,such as excellent conductivity,intrinsic stretchability,facile phase transition,and the ability to be woven or knitted into smart fabrics.This review is dedicated to summarizing different aspects of LM-based fibers,such as their material components,fabrication and design strategies,and remarkable applications by way of their representative properties.Typical fabrication approaches,such as 3D printing of pure LM wire,coating the LM shell on the surface of the fiber,injecting a LM core into hollow fibers,and spinning of LM and polymer hybrids have been comparatively illustrated.Moreover,emerging applications that primarily utilize LM fibers have been demonstrated.Finally,future directions and opportunities in the field are discussed.This categorization of LM fibers is expected to facilitate further investigation and practice in the coming society.
基金financially supported by the National Natural Science Foundation of China (Nos. 51973153, 22001191)。
文摘Covalent organic frameworks(COFs) are a class of crystalline porous organic materials with variable structures and fascinating properties. The intrinsic low conductivity impedes their widely application in optoelectronic. Iodine doping is an effective way to enhance the electrical conductivity of COFs. Here, a novel 3D imine COF with lvt topology is synthesized from two different pentacene derivatives with the same core in the form of structural complementarity. DDHP-COF is a highly crystalline material featuring high surface area of 1679 m^(2)/g and excellent thermal stability up to 490 ℃. Upon doping with iodine, the electrical conductivity can reach as high as 1.5×10^(-2)S/m which is significantly enhanced over 6 orders of magnitude compared with the pristine COF.
基金This work was financially supported by the National Natural Science Foundation of China(31271645)the Agricultural Science and Technology Project(20140311007-4)+1 种基金the Natural Science Foundation(201701D121109)the Key research and development plan(201703D211020-2)of Shanxi Province,China.
文摘Photo biodegradable film is an ideal degradable mulch film with synergistic effect of photo-degradability and biodegradability.To examine the covering effects of different films,maize was cultivated in the field with three kinds of degradable films(DF)mulching which had different degradation cycles(DF No.1,No.2 and No.3),with common plastic film mulching and no filming mulching(open ground)as comparison.The degradation rates and degrees of degradable films were examined,and the effects of different films on soil temperature,soil moisture,maize yield and relevant characteristics in each treatment were analyzed.The results indicated that the degradable films had good degradability,and the weight loss rate in 100 d for DF No.1,No.2,and No.3 were 22.31%,19.46%,and 15.63%,which were 4.16,3.63,and 2.92 times of the plastic film,respectively.In the early period of maize growth,the degradable films had good warming effects on soil,which were similar with the plastic film.The effect of DF No.2 on soil water conservation was slightly better than that of DF No.1 or No.3,similar with that of the plastic film.The soil water contents in 0-140 cm depths were significantly higher for DF No.2 than that for the open ground(p<0.05).The degradable films could significantly promote the ear development of maize,improve the ear characteristics,shorten the bald tip,and increase kernel number per plant(KNP)and 1000-kernel weight(TKW).The grain yields(GYs)for DF No.2,No.1,and No.3 were significantly improved,with 35.15%,31.35%,and 30.07%higher than that the open ground respectively(p<0.05).With no significant difference between DF and the plastic film,the GY was increased more for DF No.2 than that for DF No.1 and No.3.The degradable films fulfilled successfully all the functions of the plastic film,thus they were recommended as viable option to the plastic film due to their good degradability.