期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Energy transfer and 2 μm emission in Tm^(3+)/Ho^(3+) co-doped(Y_(0.87)La_(0.1)Zr_(0.03))_2O_3 nanopowders 被引量:1
1
作者 Yaqian Chen Huanping Wang +6 位作者 Xiaoting Zhang Zhen Xiao Qinghua Yang ruoshan lei Degang Deng Lihui Huang Shiqing Xu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2018年第5期468-473,共6页
(Y0.87La0.1Zr0.03)2O3 nanopowders doped with various concentrations of Tm^3+ and Ho^3+ were prepared by the citrate method. The standard cubic Y2O3 phase can be matched in the Tm^3+/Ho^3+ co-doped(Y0.87La0.1Zr0... (Y0.87La0.1Zr0.03)2O3 nanopowders doped with various concentrations of Tm^3+ and Ho^3+ were prepared by the citrate method. The standard cubic Y2O3 phase can be matched in the Tm^3+/Ho^3+ co-doped(Y0.87La0.1Zr0.03)2 O3 nanopowders. The nanopowders exhibit average particle sizes of 40,60, 80 and 100 nm after calcinated at 900,1000,1100 and 1200℃,respectively. The energy transfer from Tm^3+ to Ho^3+ and the optimum fluorescence emission around 2 μm were investigated. Results indicate that the emission bands at around 1.86 and 1.95 μm correspond to 3 F4→3 H6 transition of Tm^3+ and 5 I7→5 I8 transition of Ho^3+, respectively.Better spectral properties were achieved in Tm^3+/Ho^3+ co-doped(Y0.87La0.1Zr0.03)2O3 nanopowders with the average size of 100 nm obtained at the conditions of the treatment of precursors calcinated at 1200 ℃ for 2 h doped with 1.5 mol% Tm^3+ and 1 mol% Ho^3+. 展开更多
关键词 Emission spectral Tm^3+/Ho^3+ Y2O3 La2O3-ZrO2 NANOPOWDERS Rare earths
原文传递
Effect of Li+ ion concentration on upconversion emission and temperature sensing behavior of La2O3:Er3+ phosphors 被引量:4
2
作者 Guangrun Chen ruoshan lei +4 位作者 Shiqing Xu Huanping Wang Shilong Zhao Feifei Huang Yin Tian 《Journal of Rare Earths》 SCIE EI CAS CSCD 2018年第2期119-124,共6页
The effects of Li~+ co-doping concentration on the structure, upconversion luminescence and temperature sensing behavior of Er^(3+):La_2O_3 phosphors were investigated. X-ray diffraction and scanning electron mic... The effects of Li~+ co-doping concentration on the structure, upconversion luminescence and temperature sensing behavior of Er^(3+):La_2O_3 phosphors were investigated. X-ray diffraction and scanning electron microscopy observations reveal that Li~+ ion co-doping can change the lattice parameter of La_2O_3 host and increase the particle size of the samples. The optical investigation shows that co-doping of Li~+ ions can enhance the upconversion emission of Er^(3+) ions in La_2O_3 matrix effectively. Most importantly, the temperature sensing sensitivity of the samples is found to be dependent on Li~+ co-doping concentration,when the emission intensity ratio of the(~2H_(11/2)→~4 I_(15/2)) and(~4 S_(3/2)→~4 I_(15/2)) transitions of Er^(3+) is chosen as the thermometric index. Both of the optimum upconversion luminescence and temperature sensing sensitivity are obtained for 7 mol% Li~+ co-doped sample. When the Li~+ concentration is beyond 7 mol%,both the quenching in upconversion intensity and the degradation of temperature sensitivity are observed, which may be due to the serious distortion in local crystal field around Er^(3+) ions caused by the excess Li~+ ions. 展开更多
关键词 Gel combustion method Rare-earth La2O3:Er3+/Li+ Upconversion photoluminescence Temperature sensing
原文传递
Upconversion luminescence, intrinsic optical bistability,and optical thermometry in Ho3+/Yb3+: BaMoO4 phosphors
3
作者 刘鑫 雷若姗 +4 位作者 黄飞飞 邓德刚 王焕平 赵士龙 徐时清 《Chinese Optics Letters》 SCIE EI CAS CSCD 2019年第11期61-64,共4页
Ho^3+/Yb^3+: BaMoO4 phosphors with different concentrations were fabricated by a gel combustion method.The upconversion(UC) luminescence, intrinsic optical bistability, and the corresponding mechanisms were reported f... Ho^3+/Yb^3+: BaMoO4 phosphors with different concentrations were fabricated by a gel combustion method.The upconversion(UC) luminescence, intrinsic optical bistability, and the corresponding mechanisms were reported for the present system. The optical thermometric properties based on red(^5F5→^5I8) and green(^5F4/^5S2→^5I8) emissions were studied. The sensing sensitivities could be tuned by manipulating the cooperative energy transfer process. The highest absolute sensitivity was 99 × 10^-4 K^-1 at 573 K, which is larger than that of many previous UC materials. 展开更多
关键词 materials. process. method.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部