A newly designed electric assisted micro-electrolysis filter(E-ME) was developed to investigate its degradation efficiency for coking wastewater and correlated characteristics. The performance of the E-ME system was...A newly designed electric assisted micro-electrolysis filter(E-ME) was developed to investigate its degradation efficiency for coking wastewater and correlated characteristics. The performance of the E-ME system was compared with separate electrolysis(SE) and micro-electrolysis(ME) systems. The results showed a prominent synergistic effect on COD removal in E-ME systems. Gas chromatography/mass spectrometry(GC–MS) analysis confirmed that the applied electric field enhanced the degradation of phenolic compounds.Meanwhile, more biodegradable oxygen-bearing compounds were detected. SEM images of granular activated carbon(GAC) showed that inactivation and blocking were inhibited during the E-ME process. The effects of applied voltage and initial p H in E-ME systems were also studied. The best voltage value was 1 V, but synergistic effects existed even with lower applied voltage. E-ME systems exhibited some p H buffering capacity and attained the best efficiency in neutral media, which means that there is no need to adjust p H prior to or during the treatment process. Therefore, E-ME systems were confirmed as a promising technology for treatment of coking wastewater and other refractory wastewater.展开更多
基金supported by the National Major Project for Water Pollution Control and Scientific Management (No. 2014ZX07105-001)the Major Special Science and Technology Project of Yunnan Province for New Energy (No. 2012ZB005)the National Natural Science Foundation of China (No. 21377048)
文摘A newly designed electric assisted micro-electrolysis filter(E-ME) was developed to investigate its degradation efficiency for coking wastewater and correlated characteristics. The performance of the E-ME system was compared with separate electrolysis(SE) and micro-electrolysis(ME) systems. The results showed a prominent synergistic effect on COD removal in E-ME systems. Gas chromatography/mass spectrometry(GC–MS) analysis confirmed that the applied electric field enhanced the degradation of phenolic compounds.Meanwhile, more biodegradable oxygen-bearing compounds were detected. SEM images of granular activated carbon(GAC) showed that inactivation and blocking were inhibited during the E-ME process. The effects of applied voltage and initial p H in E-ME systems were also studied. The best voltage value was 1 V, but synergistic effects existed even with lower applied voltage. E-ME systems exhibited some p H buffering capacity and attained the best efficiency in neutral media, which means that there is no need to adjust p H prior to or during the treatment process. Therefore, E-ME systems were confirmed as a promising technology for treatment of coking wastewater and other refractory wastewater.