A geoelectric survey employing the vertical electrical sounding (VES) was carried out in parts of Onicha-Ugbo in Aniocha North Local Government Area of Delta State using Abem Terrameter SAS 300C together with SAS 2000...A geoelectric survey employing the vertical electrical sounding (VES) was carried out in parts of Onicha-Ugbo in Aniocha North Local Government Area of Delta State using Abem Terrameter SAS 300C together with SAS 2000 booster. The study was carried out with the aim of delineating the subsurface geologic sequence present in the study area, determining their geoelectrical parameters (layer thicknesses and resistivities), and delineating the structural and geomorphological features present beneath the subsurface. The results of the survey suggest that the subsurface comprises of 5 - ?6 layers and that clay and silt content varies vertically and horizontally, thus influencing the apparent resistivity of the area. The geoelectric section developed shows that the subsurface units are dominantly sandy underlying loamy sandy topsoil which is relatively dry. The depth to water table from the sites is above 150 m and suggests that groundwater exploration is encouraging.展开更多
An electrical resistivity survey involving vertical electrical sounding (VES) technique was carried out in Issele-Azagba, Aniocha North Local Government Area of Delta State, Nigeria. This was aimed at investigating th...An electrical resistivity survey involving vertical electrical sounding (VES) technique was carried out in Issele-Azagba, Aniocha North Local Government Area of Delta State, Nigeria. This was aimed at investigating the lithologic boundaries and classification of the various subsurface formations. The data obtained were subjected to a twofold interpretative procedure involving initial partial curve matching and computer iteration. Results showed that a maximum of five subsurface layers was delineated from the geoelectric sections. This is made up of loamy topsoil underlain by relatively continuous sandy units composed of different compaction, wetness and clay content. The result also showed that the fifth substratum of the geoelectric section was the aquiferous sand relevant in groundwater development within the study area. Analysis of the result had shown that the aquifers identified in this study were vulnerable contamination percolating from the surface due to the absence of a protective aquitards.展开更多
文摘A geoelectric survey employing the vertical electrical sounding (VES) was carried out in parts of Onicha-Ugbo in Aniocha North Local Government Area of Delta State using Abem Terrameter SAS 300C together with SAS 2000 booster. The study was carried out with the aim of delineating the subsurface geologic sequence present in the study area, determining their geoelectrical parameters (layer thicknesses and resistivities), and delineating the structural and geomorphological features present beneath the subsurface. The results of the survey suggest that the subsurface comprises of 5 - ?6 layers and that clay and silt content varies vertically and horizontally, thus influencing the apparent resistivity of the area. The geoelectric section developed shows that the subsurface units are dominantly sandy underlying loamy sandy topsoil which is relatively dry. The depth to water table from the sites is above 150 m and suggests that groundwater exploration is encouraging.
文摘An electrical resistivity survey involving vertical electrical sounding (VES) technique was carried out in Issele-Azagba, Aniocha North Local Government Area of Delta State, Nigeria. This was aimed at investigating the lithologic boundaries and classification of the various subsurface formations. The data obtained were subjected to a twofold interpretative procedure involving initial partial curve matching and computer iteration. Results showed that a maximum of five subsurface layers was delineated from the geoelectric sections. This is made up of loamy topsoil underlain by relatively continuous sandy units composed of different compaction, wetness and clay content. The result also showed that the fifth substratum of the geoelectric section was the aquiferous sand relevant in groundwater development within the study area. Analysis of the result had shown that the aquifers identified in this study were vulnerable contamination percolating from the surface due to the absence of a protective aquitards.