As a member of the Chinese modeling groups,the coupled ocean-ice component of the Chinese Academy of Sciences’Earth System Model,version 2.0(CAS-ESM2.0),is taking part in the Ocean Model Intercomparison Project Phase...As a member of the Chinese modeling groups,the coupled ocean-ice component of the Chinese Academy of Sciences’Earth System Model,version 2.0(CAS-ESM2.0),is taking part in the Ocean Model Intercomparison Project Phase 1(OMIP1)experiment of phase 6 of the Coupled Model Intercomparison Project(CMIP6).The simulation was conducted,and monthly outputs have been published on the ESGF(Earth System Grid Federation)data server.In this paper,the experimental dataset is introduced,and the preliminary performances of the ocean model in simulating the global ocean temperature,salinity,sea surface temperature,sea surface salinity,sea surface height,sea ice,and Atlantic Meridional Overturning Circulation(AMOC)are evaluated.The results show that the model is at quasi-equilibrium during the integration of 372 years,and performances of the model are reasonable compared with observations.This dataset is ready to be downloaded and used by the community in related research,e.g.,multi-ocean-sea-ice model performance evaluation and interannual variation in oceans driven by prescribed atmospheric forcing.展开更多
The second version of the Chinese Academy of Sciences Earth System Model(CAS-ESM2.0)is participating in the Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP)experiments in phase 6 of the Coupled Model Intercom...The second version of the Chinese Academy of Sciences Earth System Model(CAS-ESM2.0)is participating in the Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP)experiments in phase 6 of the Coupled Model Intercomparison Project(CMIP6).The purpose of FAFMIP is to understand and reduce the uncertainty of ocean climate changes in response to increased CO2 forcing in atmosphere-ocean general circulation models(AOGCMs),including the simulations of ocean heat content(OHC)change,ocean circulation change,and sea level rise due to thermal expansion.FAFMIP experiments(including faf-heat,faf-stress,faf-water,faf-all,faf-passiveheat,faf-heat-NA50pct and faf-heat-NA0pct)have been conducted.All of the experiments were integrated over a 70-year period and the corresponding data have been uploaded to the Earth System Grid Federation data server for CMIP6 users to download.This paper describes the experimental design and model datasets and evaluates the preliminary results of CAS-ESM2.0 simulations of ocean climate changes in the FAFMIP experiments.The simulations of the changes in global ocean temperature,Atlantic Meridional Overturning Circulation(AMOC),OHC,and dynamic sea level(DSL),are all reasonably reproduced.展开更多
The well-posedness of the dynamic framework in earth-system model(ESM for short)is a common issue in earth sciences and mathematics.In this paper,the authors first introduce the research history and fundamental roles ...The well-posedness of the dynamic framework in earth-system model(ESM for short)is a common issue in earth sciences and mathematics.In this paper,the authors first introduce the research history and fundamental roles of the well-posedness of the dynamic framework in the ESM,emphasizing the three core components of ESM,i.e.,the atmospheric general circulation model(AGCM for short),land-surface model(LSM for short)and oceanic general circulation model(OGCM for short)and their couplings.Then,some research advances made by their own research group are outlined.Finally,future research prospects are discussed.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41706036 and 41706028)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDY-SSWDQC002)+2 种基金the National Key R&D Program for Developing Basic Sciences(Grant Nos.2016YFC14014012016YFC1401601 and 2016YFB0200804)the National Key Scientific and Technological Infrastructure project entitled“Earth System Science Numerical Simulator Facility”(Earth Lab)key operation construction projects of Chongqing Meteorological Bureau-“Construction of chongqing short-term climate numerical prediction platform”。
文摘As a member of the Chinese modeling groups,the coupled ocean-ice component of the Chinese Academy of Sciences’Earth System Model,version 2.0(CAS-ESM2.0),is taking part in the Ocean Model Intercomparison Project Phase 1(OMIP1)experiment of phase 6 of the Coupled Model Intercomparison Project(CMIP6).The simulation was conducted,and monthly outputs have been published on the ESGF(Earth System Grid Federation)data server.In this paper,the experimental dataset is introduced,and the preliminary performances of the ocean model in simulating the global ocean temperature,salinity,sea surface temperature,sea surface salinity,sea surface height,sea ice,and Atlantic Meridional Overturning Circulation(AMOC)are evaluated.The results show that the model is at quasi-equilibrium during the integration of 372 years,and performances of the model are reasonable compared with observations.This dataset is ready to be downloaded and used by the community in related research,e.g.,multi-ocean-sea-ice model performance evaluation and interannual variation in oceans driven by prescribed atmospheric forcing.
基金supported by the National Major Research High Performance Computing Program of China(Grant No.2016YFB0200804)the National Natural Science Foundation of China(Grant Nos.41706036,41706028,41975129 and 41630530)+2 种基金the open fund of State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography(Grant No.QNHX2017)the National Key Scientific and Technological Infrastructure project entitled“Earth System Science Numerical Simulator Facility”(Earth Lab)key operation construction projects of Chongqing Meteorological Bureau"Construction of chongqing short-term climate numerical predic tion platform"。
文摘The second version of the Chinese Academy of Sciences Earth System Model(CAS-ESM2.0)is participating in the Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP)experiments in phase 6 of the Coupled Model Intercomparison Project(CMIP6).The purpose of FAFMIP is to understand and reduce the uncertainty of ocean climate changes in response to increased CO2 forcing in atmosphere-ocean general circulation models(AOGCMs),including the simulations of ocean heat content(OHC)change,ocean circulation change,and sea level rise due to thermal expansion.FAFMIP experiments(including faf-heat,faf-stress,faf-water,faf-all,faf-passiveheat,faf-heat-NA50pct and faf-heat-NA0pct)have been conducted.All of the experiments were integrated over a 70-year period and the corresponding data have been uploaded to the Earth System Grid Federation data server for CMIP6 users to download.This paper describes the experimental design and model datasets and evaluates the preliminary results of CAS-ESM2.0 simulations of ocean climate changes in the FAFMIP experiments.The simulations of the changes in global ocean temperature,Atlantic Meridional Overturning Circulation(AMOC),OHC,and dynamic sea level(DSL),are all reasonably reproduced.
基金supported by the National Natural Science Foundation of China(Nos.41975129,41630530)Key Research Program of Frontier Sciences,Chinese Academy of Sciences(No.QYZDYSSW-DQC002)the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(EarthLab).
文摘The well-posedness of the dynamic framework in earth-system model(ESM for short)is a common issue in earth sciences and mathematics.In this paper,the authors first introduce the research history and fundamental roles of the well-posedness of the dynamic framework in the ESM,emphasizing the three core components of ESM,i.e.,the atmospheric general circulation model(AGCM for short),land-surface model(LSM for short)and oceanic general circulation model(OGCM for short)and their couplings.Then,some research advances made by their own research group are outlined.Finally,future research prospects are discussed.