Oligodendrocytes(OLs) are myelinating glial cells that form myelin sheaths around axons to ensure rapid and focal conduction of action potentials. Here, we found that an axonal outgrowth regulatory molecule, AATYK(...Oligodendrocytes(OLs) are myelinating glial cells that form myelin sheaths around axons to ensure rapid and focal conduction of action potentials. Here, we found that an axonal outgrowth regulatory molecule, AATYK(apoptosis-associated tyrosine kinase), was up-regulated with OL differentiation and remyelination. We therefore studied its role in OL differentiation. The results showed that AATYK knockdown inhibited OL differentiation and the expression of myelin genes in vitro. Moreover, AATYKdeficiency maintained the proliferation status of OLs but did not affect their survival. Thus, AATYK is essential for the differentiation of OLs.展开更多
Dear Editor,Myelin,the lipid-rich insulation that supports the integrity of axons,enables rapid conduction of nerve impulses and information flow to distant brain areas[1].Oligodendrocytes(OLs)are glial cells that mye...Dear Editor,Myelin,the lipid-rich insulation that supports the integrity of axons,enables rapid conduction of nerve impulses and information flow to distant brain areas[1].Oligodendrocytes(OLs)are glial cells that myelinate axons with specialized lipid membrane extensions[2].OL progenitor cells(OPCs)arise from neural stem cells[3],and undergo proliferation before terminal differentiation and eventual myelination.Impairment at any stage of OL development can affect myelin formation.展开更多
Oligodendrocytes(OLs) are glial cells that form myelin sheaths around axons in the central nervous system(CNS).Loss of the myelin sheath in demyelinating and neurodegenerative diseases can lead to severe impairmen...Oligodendrocytes(OLs) are glial cells that form myelin sheaths around axons in the central nervous system(CNS).Loss of the myelin sheath in demyelinating and neurodegenerative diseases can lead to severe impairment of movement.Understanding the extracellular signals and intracellular factors that regulate OL differentiation and myelination during development can help to develop novel strategies for enhancing myelin repair in neurological disorders.Here,we report that TAPP1 was selectively expressed in differentiating OL precursor cells(OPCs).TAPP1 knockdown promoted OL differentiation and myelin gene expression in culture.Conversely,over-expression of TAPP1 in immature OPCs suppressed their differentiation.Moreover,TAPP1 inhibition in OPCs altered the expression of Erk1/2 but not AKT.Taken together,our results identify TAPP1 as an important negative regulator of OPC differentiation through the Mek/Erk signaling pathway.展开更多
基金supported by the National Natural Sciences Foundation of China (31471955)the Natural Science Foundation of Zhejiang Province, China (LY17C090006+1 种基金 Q16C090017 LY18H090014)
文摘Oligodendrocytes(OLs) are myelinating glial cells that form myelin sheaths around axons to ensure rapid and focal conduction of action potentials. Here, we found that an axonal outgrowth regulatory molecule, AATYK(apoptosis-associated tyrosine kinase), was up-regulated with OL differentiation and remyelination. We therefore studied its role in OL differentiation. The results showed that AATYK knockdown inhibited OL differentiation and the expression of myelin genes in vitro. Moreover, AATYKdeficiency maintained the proliferation status of OLs but did not affect their survival. Thus, AATYK is essential for the differentiation of OLs.
基金supported by the Natural Science Foundation of Zhejiang Province,China(LY17C090006,LQ16C090004,and LY18H090014)。
文摘Dear Editor,Myelin,the lipid-rich insulation that supports the integrity of axons,enables rapid conduction of nerve impulses and information flow to distant brain areas[1].Oligodendrocytes(OLs)are glial cells that myelinate axons with specialized lipid membrane extensions[2].OL progenitor cells(OPCs)arise from neural stem cells[3],and undergo proliferation before terminal differentiation and eventual myelination.Impairment at any stage of OL development can affect myelin formation.
基金supported by the National Natural Sciences Foundation of China (31471955 and 31372150)the National Basic Research Development Program (973 Program) of China (2013CB531300)
文摘Oligodendrocytes(OLs) are glial cells that form myelin sheaths around axons in the central nervous system(CNS).Loss of the myelin sheath in demyelinating and neurodegenerative diseases can lead to severe impairment of movement.Understanding the extracellular signals and intracellular factors that regulate OL differentiation and myelination during development can help to develop novel strategies for enhancing myelin repair in neurological disorders.Here,we report that TAPP1 was selectively expressed in differentiating OL precursor cells(OPCs).TAPP1 knockdown promoted OL differentiation and myelin gene expression in culture.Conversely,over-expression of TAPP1 in immature OPCs suppressed their differentiation.Moreover,TAPP1 inhibition in OPCs altered the expression of Erk1/2 but not AKT.Taken together,our results identify TAPP1 as an important negative regulator of OPC differentiation through the Mek/Erk signaling pathway.