Ionic liquids combined with supercriticalfluid technology hold great promise as working solvents for developing compact processes.Ionic liquids,which are organic molten salts,typically have extremely low volatility and...Ionic liquids combined with supercriticalfluid technology hold great promise as working solvents for developing compact processes.Ionic liquids,which are organic molten salts,typically have extremely low volatility and high functionality,but possess high viscos-ities,surface tensions and low diffusion coefficients,which can limit their applicability.CO_(2),on the other hand,especially in its supercritical state,is a green solvent that can be used advantageously when combined with the ionic liquid to provide viscosity and surface tension reduction and to promote mass transfer.The solubility of CO_(2) in the ionic liquid is key to estimating the important physical properties that include partition coefficients,viscosities,densities,interfacial tensions,thermal conductivities and heat capacities needed in contactor design.In this work,we examine a subset of available high pressure pure component ionic liquid PVT data and high pressure CO_(2)-ionic liquid solubility data and report new correlations for CO_(2)-ionic liquid systems with equations of state that have some industrial applications including:(1)general,(2)fuel desulfurization,(3)CO_(2) capture,and(4)chiral separation.New measurements of solubility data for the CO_(2) and 1-butyl-3-methylimidazolium octyl sulfate,[bmim][OcSO4]system are reported and correlated.In the correlation of the CO_(2) ionic liquid phase behavior,the Peng-Robinson and the Sanchez-Lacombe equations of state were considered and are compared.It is shown that excellent correlation of CO_(2) solubility can be obtained with either equation and they share some common characteristics regarding inter-action parameters.In the Sanchez-Lacombe equation,parameters that are derived from the supercritical region were found to be important for obtaining good correlation of the CO_(2)-ionic liquid solubility data.展开更多
基金support of the Monbukagakusho,the Ministry of Education,Culture,Sports,Science and Technology and also that of the Global Education Center of Excellence(GCOE).
文摘Ionic liquids combined with supercriticalfluid technology hold great promise as working solvents for developing compact processes.Ionic liquids,which are organic molten salts,typically have extremely low volatility and high functionality,but possess high viscos-ities,surface tensions and low diffusion coefficients,which can limit their applicability.CO_(2),on the other hand,especially in its supercritical state,is a green solvent that can be used advantageously when combined with the ionic liquid to provide viscosity and surface tension reduction and to promote mass transfer.The solubility of CO_(2) in the ionic liquid is key to estimating the important physical properties that include partition coefficients,viscosities,densities,interfacial tensions,thermal conductivities and heat capacities needed in contactor design.In this work,we examine a subset of available high pressure pure component ionic liquid PVT data and high pressure CO_(2)-ionic liquid solubility data and report new correlations for CO_(2)-ionic liquid systems with equations of state that have some industrial applications including:(1)general,(2)fuel desulfurization,(3)CO_(2) capture,and(4)chiral separation.New measurements of solubility data for the CO_(2) and 1-butyl-3-methylimidazolium octyl sulfate,[bmim][OcSO4]system are reported and correlated.In the correlation of the CO_(2) ionic liquid phase behavior,the Peng-Robinson and the Sanchez-Lacombe equations of state were considered and are compared.It is shown that excellent correlation of CO_(2) solubility can be obtained with either equation and they share some common characteristics regarding inter-action parameters.In the Sanchez-Lacombe equation,parameters that are derived from the supercritical region were found to be important for obtaining good correlation of the CO_(2)-ionic liquid solubility data.