In this paper,we study Tingley's problem on symmetric absolute normalized norms on R^2.We construct new methods for Tingley's problem on two-dimensional spaces by using isosceles orthogonality,which does not make us...In this paper,we study Tingley's problem on symmetric absolute normalized norms on R^2.We construct new methods for Tingley's problem on two-dimensional spaces by using isosceles orthogonality,which does not make use of the notion of natural extension.Furthermore,using our methods,several sufficient conditions for Tingley's problem on symmetric absolute normalized norms on R2 are given.As applications,we present various new examples including the two-dimensional Lorentz sequence space d^(2)(ω,q) and its dual d^(2)(ω,q)*by simple arguments.展开更多
Let f : S(E) → S(B) be a surjective isometry between the unit spheres of two weakly compact JB*-triples not containing direct summands of rank less than or equal to 3. Suppose E has rank greater than or equal to 5. A...Let f : S(E) → S(B) be a surjective isometry between the unit spheres of two weakly compact JB*-triples not containing direct summands of rank less than or equal to 3. Suppose E has rank greater than or equal to 5. Applying techniques developed in JB*-triple theory, we prove that f admits an extension to a surjective real linear isometry T : E → B. Among the consequences, we show that every surjective isometry between the unit spheres of two compact C*-algebras A and B, without assuming any restriction on the rank of their direct summands(and in particular when A = K(H) and B = K(H′)), extends to a surjective real linear isometry from A into B. These results provide new examples of infinite-dimensional Banach spaces where Tingley's problem admits a positive answer.展开更多
In this paper, we consider the following problem about the James constant: When does the equality J(X*) = J(X) hold for a Banach space X ? It is known that the James constant of a Banach space does not coincide...In this paper, we consider the following problem about the James constant: When does the equality J(X*) = J(X) hold for a Banach space X ? It is known that the James constant of a Banach space does not coincide with that of its dual space in general. In fact, we already have counterexamples of two-dimensional normed spaces that are equipped with either symmetric or absolute norms. However,we show that if the norm on a two-dimensional space X is both symmetric and absolute, then the equality J(X*) = J(X) holds. This provides a global answer to the problem in the two-dimensional case.展开更多
文摘In this paper,we study Tingley's problem on symmetric absolute normalized norms on R^2.We construct new methods for Tingley's problem on two-dimensional spaces by using isosceles orthogonality,which does not make use of the notion of natural extension.Furthermore,using our methods,several sufficient conditions for Tingley's problem on symmetric absolute normalized norms on R2 are given.As applications,we present various new examples including the two-dimensional Lorentz sequence space d^(2)(ω,q) and its dual d^(2)(ω,q)*by simple arguments.
基金supported by the Spanish Ministry of Economy and Competitiveness and European Regional Development Fund (Grant No. MTM2014-58984-P)Junta de Andalucía (Grant No. FQM375)+1 种基金Grants-in-Aid for Scientific Research (Grant No. 16J01162)Japan Society for the Promotion of Science
文摘Let f : S(E) → S(B) be a surjective isometry between the unit spheres of two weakly compact JB*-triples not containing direct summands of rank less than or equal to 3. Suppose E has rank greater than or equal to 5. Applying techniques developed in JB*-triple theory, we prove that f admits an extension to a surjective real linear isometry T : E → B. Among the consequences, we show that every surjective isometry between the unit spheres of two compact C*-algebras A and B, without assuming any restriction on the rank of their direct summands(and in particular when A = K(H) and B = K(H′)), extends to a surjective real linear isometry from A into B. These results provide new examples of infinite-dimensional Banach spaces where Tingley's problem admits a positive answer.
文摘In this paper, we consider the following problem about the James constant: When does the equality J(X*) = J(X) hold for a Banach space X ? It is known that the James constant of a Banach space does not coincide with that of its dual space in general. In fact, we already have counterexamples of two-dimensional normed spaces that are equipped with either symmetric or absolute norms. However,we show that if the norm on a two-dimensional space X is both symmetric and absolute, then the equality J(X*) = J(X) holds. This provides a global answer to the problem in the two-dimensional case.